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ABSTRACT 

An algorithm is presented for feedback blind phase 

synchronization for signals with quadrature amplitude 

modulation. The algorithm is based on a circular harmonic 

expansion (CHE) of log-likelihood function (LLF). 

Retaining one or two most significant terms in this series 

gives a harmonic or biharmonic circular decomposition of 

the LLF. Earlier this approach was presented by authors for 

feedforward blind phase and frequency estimation. In this 

paper we present application of CHE of LLF to feedback 

synchronization. The main point is employing the derivative 

of LLF approximation by CHE as an error signal for phase 

recovery loop. Optimization of weighting functions is also 

presented. Simulation results show that optimal biharmonic 

method has performance close to decision-directed 

algorithm and approaches modified Cramer-Rao bound. 

Advantages of the algorithm are wide acquisition range and 

no necessity of hard decisions that may be absent in soft-

output detectors. 

 

Index Terms— Blind estimation, non-data-aided 

estimation, phase offset, quadrature amplitude modulation, 

feedback synchronization, closed-loop recovery 

1. INTRODUCTION 

Phase synchronization procedures are mandatory in the 

systems performing coherent processing of signals with linear 

digital modulation. Implementing these procedures it is in 

some cases necessary to perform blind estimations as the 

signal does not include special pilot sequences. Phase 

synchronization methods can be divided into two major 

classes: feedforward (open-loop) algorithms calculate 

necessary estimates from the samples of observed signal, and 

feedback (closed-loop) algorithms constitute recursive 

tracking systems. For quick initial parameter estimation 

feedforward methods are usually used. Feedback algorithms 

are able to track slow parameter fluctuations, so feedforward 

estimates are used as initial states to launch tracking systems. 

Decision-directed (DD) algorithm is often used for 

feedback synchronization. In [1] it is presented in detail and 

its characteristics are given. The problem of this algorithm 

consists in possible convergence to wrong phase values that 

depend on signal constellation. Modifications of DD 

algorithm were presented in [2]–[6]. Specifically, in [5], [6] 

a solution to eliminate wrong phase points is proposed. 

Blind (non-data-aided) phase synchronization 

algorithms for phase-shift-keying signals are considered 

in [1], [7], and [8]. Some of them represent power-law 

algorithms, also known as monomial-based Viterbi and 

Viterbi synchronizers [9]. In [1] the algorithm is based on 

approximation of LLF. In [7] there are two new algorithms, 

which are independent of the imperfection of automatic gain 

control. In [8] maximum likelihood clockless feedback 

phase recovery is proposed. In [10] two algorithms are 

analyzed in detail for 16-APSK, they are also based on the 

power-law algorithms. In [11] non-DD blind carrier recovery 

algorithm for 16-QAM based on multi-modulus algorithm is 

presented. Its main advantage is the absence of the decision 

feedback module and, therefore, low complexity of the 

algorithm that is important for optical coherent receivers. 

In our paper [12] we introduced the idea of using 

circular harmonic expansion (CHE) of log-likelihood 

function (LLF) for blind phase offset estimation, later this 

approach was extended to frequency [13] and joint 

frequency and phase estimation [14]. These works showed 

promising results for the use of combination of two circular 

harmonics of LLF. In [15] we proposed optimization of 

weighting functions for both harmonic and biharmonic 

methods. In this paper we consider using CHE of LLF for 

feedback synchronization. 

The paper is organized as follows. In Section 2 problem 

formulation is stated. In Section 3 CHE and proposed 

algorithm are considered. In Section 4 optimization of 

weighting functions is performed. In Section 5 we 

demonstrate and discuss simulation results. 

2. PROBLEM FORMULATION 

The phase offset estimation problem can be formulated as 

follows. Input signal { ( )}x k�  constitutes a sequence of baud-

rate samples after matched filter: 

 0( ) ( ) ( ), 0,..., 1,
j

x k a k e n k k K
ϕ= + = −� � �  (1) 

where ( )a k�  are information symbols uniformly and 

independently drawn from the modulation constellation 

{ }
m

C� , m = 1, …, M (M is the constellation size), ϕ0 is a 

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5780



constant phase offset uniformly distributed over the range 

0…2π, ( )n k�  are the samples of complex discrete white 

Gaussian noise with variances of real and imaginary parts 

equal to σ2
. The signal and noise levels are assumed to be 

known. Signal-to-noise ratio (SNR) is defined as the ratio 

between variances of signal and noise components: 

 

2
2

2 2
1

( ) 1
SNR .

2 2

M

m

m

a k
C

M =

= =
σ σ

∑
�

�  (2) 

 
Figure 1.  Costas phase recovery loop 

The goal is to estimate and correct the phase offset ϕ0 in 

feedback manner under the assumption that information 

symbols ( )a k�  are unknown. 

For feedback synchronization Costas loop can be 

used [1]. The scheme of phase recovery loop is shown in 

Fig. 1. We will consider the first-order tracking loop that is 

described by the following recursive equation: 

 0 0
ˆ ˆ( 1) ( ) ( ) ,k k e kϕ + = ϕ + γ  (3) 

where ( )e k  and 
0

ˆ ( )kϕ  are error signal and phase offset 

estimate on the iteration k, and γ is the step-size parameter. 

Performance of Costas phase recovery loop depends on 

error signal generation and step-size parameter γ, which is 

related to the equivalent bandwidth of the loop BT by the 

following formula [1]: 

 4BT Aγ = , (4) 

where А is the slope of the S-curve at the origin. S-curve is 

the dependence of error signal on the phase error and 

provides information about the loop acquisition capability. 

In principle, a signal can be used as an error signal if it 

satisfies the following requirements: it should have zero 

expectation in the absence of error, while the derivative of 

this expectation on error value at this point should be 

nonzero. Position of the maximum of LLF corresponds to 

parameter estimate. At the maximum the derivative of LLF 

is equal to zero. That’s why derivative of LLF can be used 

as an error signal for feedback synchronization [1]. 

In the following section we briefly describe derivation 

of error signal. 

3. CIRCULAR HARMONIC EXPANSION OF LLF 

AND PROPOSED ALGHORITHM 

LLF for a signal sample x�  is a nonlinear function: 

 ( )
0

2

0 2 2
1

1
LLF log exp .

2 2

j
M

m

m

xe C
x

M

− ϕ

=

  −  ϕ = −  πσ σ  
 

∑
��

�  (5) 

We can express sample x�  in polar coordinates, i. e. 

separate its magnitude r x= �  and phase arg xϕ = � . As a 

result, LLF can be expanded in the Fourier series along 

phase ϕ that gives its presentation in the form of circular 

harmonic expansion [16]: 

( ) ( )0

0 0

1

( )
LLF ( )cos ( ) ,

2

j

n n

n

A r
re A r n n r

∞
ϕ

=

ϕ = + ϕ − ϕ + θ∑  (6) 

where An(r) and θn(r) are magnitude and phase of the nth 

harmonic of the Fourier series: 

 ( )
2

( )

0

1
( ) LLF 0 | .nj r j jn

n
A r e re e d

π
θ ϕ − ϕ= ϕ

π ∫
 (7) 

In the sequel we assume for compactness that θn(r) = 0, 

so that An(r) can be negative. We will refer to these 

alternating versions of An(r) as weighting functions. It is 

possible because all complex coefficients (7) for a standard 

angular position of QAM constellations appear real and 

θn(r) = 0 or π. 

Polyharmonic LLF expression (6) contains infinite 

number of harmonics that leads to the idea of truncating 

Fourier series, because harmonic magnitudes decrease with 

their order. As, due to angular symmetry of QAM 

constellations, only harmonics with n divisible by 4 are 

nonzero, the resultant formula for LLF after truncating (6) 

takes the following form: 

 ( ) 04

0 4

0

LLF Re ( ) ,
N

j n

n

n

x F x e
− ϕ

=

ϕ = ∑ �� �  (8) 

where Re denotes the real part of a complex function, N is 

the number of used harmonics, and 

 
4 4( ) ( ) exp( 4 )

n n
F x A r j n= ϕ� �  (9) 

is nonlinearly transformed signal sample. 

Algorithms for feedforward phase estimation based on 

Fourier series truncation were studied in our previous 

works [12]–[14]. Now we apply this approach for feedback 

phase estimation. 

Derivative of LLF (8) along the phase ϕ0 is (term with 

n = 0 does not depend on phase, so its derivative is zero) 

 00 4

4

10

LLF( )
Im 4 ( ) ,

N
j n

n

n

x
nF x e

− ϕ

=

∂ ϕ
=

∂ϕ
∑

�
� �  (10) 

where Im denotes the imaginary part of a complex function. 

Using (10) for signal after phase correction ( ( )y k�  in 

Fig. 1), we get the following formula for error signal of 

feedback synchronization system: 

 ( )4

1

( ) Im ( ) .
N

n

n

e k nF y k
=

= ∑ � �  (11) 

Truncated Fourier series gives global approximation 

which minimizes integral squared error, while to reduce loop 

noise it is necessary to use a local approximation of LLF in 

the vicinity of its maximum. Such optimization of weighting 

functions for harmonic and biharmonic methods was 

proposed in [15] and in the next section is briefly considered 

for feedback synchronization. 

Error Generator 

Look-Up Table First-Order Filter 

( )e k  

0
ˆ ( )kϕ  

0ˆ ( )j k
e

− ϕ  

( )y k�  

( )x k�  
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4. OPTIMIZATION OF WEIGHTING FUNCTIONS 

BY MINIMIZING ESTIMATION VARIANCE 

As shown in [17], estimation variance can be obtained by 

quadratic approximation (i.e., truncating the Taylor series) 

of LLF in the vicinity of the true value. In [18] we showed 

that to minimize phase offset estimation variance and find 

optimal weighting functions it is necessary to solve the 

following optimization problem: 

 ( )
( )

2
2

1 2 min,
nA r

X X →  (12) 

where X1 and X2 are the first and second derivatives of LLF, 

respectively. But in the case of feedback synchronization X1 

corresponds to error signal, and the mean value of X2 — to 

the S-curve slope. Thus, in (12) we minimize estimation 

variance of the loop. 

Optimal weighting functions were obtained in [15] for 

harmonic method (N = 1): 

 ( ) ( )4 4 4( ) 2 ( )A r D r N r= −  (13) 

and for biharmonic method (N = 2): 

 ( ) 48 8 8 4

4 2

4 8 48

( ) ( ) 2 ( ) ( )
,

4 ( ) ( ) ( )

N r D r N r D r
A r

N r N r N r

−
=

−
 (14) 

 ( ) 48 4 4 8

8 2

4 8 48

( ) ( ) 2 ( ) ( )
,

4 ( ) ( ) ( )

N r D r N r D r
A r

N r N r N r

−
=

−
 (15) 

where 

 ( ) ( )
2

2

4

0

( ) 16 sin 4φ ,φ φ,N r p r d

π

= ∫  (16) 

 ( ) ( )
2

4

0

( ) 16 cos 4φ ,φ φ,D r p r d

π

= − ∫  (17) 

 ( ) ( ) ( )
2

48

0

( ) 64 sin 4φ sin 8φ ,φ φ,N r p r d

π

= ∫  (18) 

 ( ) ( )
2

2

8

0

( ) 64 sin 8φ ,φ φ,N r p r d

π

= ∫  (19) 

 ( ) ( )
2

8

0

( ) 64 cos 8φ ,φ φ.D r p r d

π

= − ∫  (20) 

Averaging in (16)–(20) is made over PDF of the signal 

sample x� , that can be written in polar coordinates: 
2 2

2 2
1

2 cos(φ φ )
( ,φ) exp ,

2 2

M
m m m

m

r r rrr
p r

M =

 + − −
= − 

πσ σ 
∑  (21) 

where 
m m

r C= �  and arg
m m

Cϕ = � . 

In the next section we demonstrate simulation results 

with optimal weighting functions. 

5. SIMULATION RESULTS 

To estimate accuracy of the proposed algorithms with 

optimized weighting functions, computer simulation was 

performed. We used observation of K = 1000 symbols, to 

measure phase estimation variance the results were averaged 

over observation length and 100 Monte-Carlo trials. Initial 

phase ϕ0 was zero (to avoid transient processes in the loop). 

The equivalent bandwidth of the loop BT was chosen so that 

the equivalent observation length for feedforward estimation 

is 100 symbols [1]. The slope of the S-curve at the origin 

was numerically estimated by simulation at infinite SNR. 

The resultant dependences of estimation variance on 

SNR for standard 16-QAM square and 32-QAM cross 

constellations are shown in Fig. 2 and Fig. 3. The curves are 

presented for the following algorithms: 

• “CHE1, ideal”— harmonic method with optimal SNR-

dependent weighting function (13). 

• “CHE2, ideal”— biharmonic method with optimal 

SNR-dependent weighting functions (14)–(15). 

• “CHE1, fixed”— harmonic method with optimal SNR-

fixed weighting function. 

• “CHE2, fixed”— biharmonic method with optimal 

SNR-fixed weighting functions. 

• “DD”— DD algorithm. 

• “MCRB”— modified Cramer-Rao bound (MCRB) for 

phase estimations [1]. 

From the figures it can be seen that biharmonic method 

with optimal SNR-dependent weighting functions gives 

results close to DD algorithm and approaches MCRB while 

harmonic method demonstrates performance loss about 3 dB 

for 16-QAM and up to 9 dB for 32-QAM. For low SNR 

values our curves are lower than MCRB. The main reason is 

a periodic nature of estimated parameter and natural 

“wrapping” of the estimation error to the range −π/4…+π/4. 

This wrapping is not accounted for in MCRB. Upper limit of 

wrapped phase estimation variance is equal to the variance 

of uniform distribution for the range mentioned above: 

(π/2)
2
/12 = π2

/48 ≈ 0,21 rad
2
. 

Also in Fig. 2, 3 the results are presented for simplified 

implementation of harmonic and biharmonic methods with 

SNR-fixed weighting functions. They demonstrate that using 

weighting functions calculated for a certain moderate SNR 

values (for example, 20 dB for 16-QAM and 25 dB for 32-

QAM) does not lead to any notable performance loss. Using 

weighting functions calculated for higher SNR values leads 

to performance loss at low SNR values, and vice versa. In 

practical implementation it is recommended to use weighting 

functions calculated for expected SNR. 

In Fig. 4, 5 S-curves are presented for considered 

algorithms. Analysis of S-curves gives information about 

loop acquisition capability. In particular, its nulls with 

positive slope represent stable equilibrium points while 

those with negative slope are unstable points. So, acquisition 

range for DD algorithm is about ±0,3 rad for 16-QAM and 

0,2 rad for 32-QAM, while for CHE1 and CHE2 it is the 

whole symmetry range (±π/4) for both constellations. Fig. 6, 

where transient processes for 32-QAM are presented, 

confirms this conclusion. It is seen that DD algorithm 

converges to wrong phase value, and dispersion (estimation 
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Figure 2.  Phase estimation variance for 16-QAM 
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Figure 3.  Phase estimation variance for 32-QAM 
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Figure 4.  S-curves for 16-QAM (noise-free signal) 

variance) for CHE2 is lower than for CHE1. It should be 

noted that for CHE1 the absence of wrong stable equilibrium 

points is guaranteed, while for CHE2 it depends on 

weighting functions, as error signal is generated by summing 

two harmonics. 
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Figure 5.  S-curves for 32-QAM (noise-free signal) 
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Figure 6.  Transient processes for 32-QAM and SNR = 20 dB 

6. CONCLUSION 

Proposed algorithm of feedback synchronization 

demonstrates good performance. In particular, optimal 

biharmonic method has estimation variance close to DD 

algorithm and approaches MCRB. In comparison with DD 

algorithm our algorithm possesses wider acquisition range 

(for harmonic method, absence of wrong stable equilibrium 

points is guaranteed). Also, it does not require hard 

decisions that may be absent in soft-output detectors. 

In the same manner CHE of LLF can be applied to 

feedback frequency synchronization by using second-order 

tracking loop [1] instead of first-order filter in Fig. 1. 

CHE of LLF can be easily applied to any amplitude-

phase shift keying modulation. The difference consists only 

in symmetry of constellation, i.e. in the numbers of used 

harmonics. 

The challenging direction of investigation is the 

application of the proposed approach to carrier recovery 

over wireless channels. 

5783



7. REFERENCES 

[1] U. Mengali and A. N. D’Andrea, Synchronization techniques 

for digital receivers. Plenum Press, New York, 1997. 

[2] H. Sari and S. Moridi, “New phase and frequency detectors 

for carrier recovery in PSK and QAM Systems,” IEEE Trans. 

Communications, Vol. 36, No. 9, 1988, pp. 1035–1043. 

[3] A. Mouaki Benani and F. Gagnon, “Comparison of Carrier 

Recovery Techniques in M-QAM Digital Communication 

Systems,” Proc. 2000 Canadian Conf. on Electrical and 

Computer Engineering, Vol. 1, Mar. 2000, pp. 73–77. 

[4] G. Dziwoki, “Some remarks on the reduced constellation 

decision-directed blind phase correction,” Proc. 15th IEEE 

MELECON, Valletta, Malta, April 2010, pp. 635–640. 

[5] G. Dziwoki, “An algorithm for the computation of 

undesirable phase offsets in the blind phase correction 

method,” Proc. 18th Int. Conf. Mixed Design of Integrated 

Circuits and Systems (MIXDES 2011), June 16–18, 2011, 

pp. 572–575. 

[6] G. Dziwoki, “A cost function analysis of a blind phase 

acquisition method,” Proc. 2011 IEEE Int. Symp. on 

Industrial Electronics (ISIE), 27–30 June 2011, pp. 775–778. 

[7] C. Yan, H. Wang, J. Kuang, N. Wu, and H. Zhao, “Design 

and Performance evaluation of feedback phase recovery for 

M-PSK signals,” Int. Conf. on Wireless Communications & 

Signal Processing (WCSP 2009), November 13–15, 2009, 

pp. 1–5. 

[8] H. Wang, C. Yan, N. Wu, D. Yang, and J. Kuang, “Maximum 

Likelihood Clockless Feedback Phase Recovery for MPSK 

Signals,” IEEE 72nd Vehicular Technology Conference Fall 

(VTC 2010-Fall), September 6–9, 2010, pp. 1–5. 

[9] A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of 

PSK-modulated carrier phase with application to burst digital 

transmission,” IEEE Trans. Inform. Theory, vol. 29, July 

1983, pp. 543–551. 

[10] W. Gappmair, O. Koudelka, S. Cioni, and A. Vanelli-Coralli, 

“Exact Analysis of Different Detector Algorithms for NDA 

Carrier Phase Recovery of 16-APSK Signals,” Int. Workshop 

on Satellite and Space Communications (IWSSC 2007), 

September 13–14, 2007, pp. 51–55. 

[11] M. I. Khalil, M. M. H. Abid, A. M. Chowdhury, M. S. Faruk, 

A. A. Amin, Gee-Kung Chang, and N. Amin, “Low 

Complexity Non Decision Directed Blind Carrier Phase 

Recovery Algorithm for 16-QAM optical coherent receiver,” 

IEEE 3rd Int. Conf. on Photonics (ICP-2012), October 1–3, 

2012, pp. 400–403. 

[12] A. V. Petrov and A. B. Sergienko, “Novel algorithm of blind 

phase offset estimation for QAM signals by approximating 

likelihood function,” Digital Signal Processing, No. 1, 2011, 

pp. 28–32. — in Russian. 

[13] A. B. Sergienko and A. V. Petrov, “Blind carrier frequency 

offset estimation for QAM signals based on weighted 4th 

power of signal samples,” Proc. 8th IEEE East-West Design & 

Test Symposium (EWDTS 2010), St. Petersburg, September 

17–20, 2010, pp. 278–281. 

[14] A. B. Sergienko and A. V. Petrov, “Joint blind estimation of 

carrier phase and frequency offset for QAM signals using 

circular harmonic decomposition,” Proc. 36th IEEE Int. Conf. 

on Acoustic, Speech and Signal Processing (ICASSP 2011), 

Prague, May 22–27, 2011, pp. 3460–3463. 

[15] A. V. Petrov and A. B. Sergienko. Optimal Blind Biharmonic 

Feedforward Phase Offset Estimation for QAM Signals,” 

Proc. IEEE Int. Conf. on Communications (ICC 2013), 

Budapest, June 9–13, 2013, pp. 3349–3353. 

[16] G. Jacovitti and A. Neri, “Multiresolution circular harmonic 

decomposition,” IEEE Trans. Signal Processing, Vol. 48, 

No. 11, Nov. 2000, pp. 3242–3247. 

[17] H. C. So, Y. T. Chan, K. C. Ho, and Y. Chen, “Simple 

Formulas for Bias and Mean Square Error Computation,” 

IEEE Signal Processing Magazine, July 2013, pp. 162–165. 

[18] A. Petrov and A. Sergienko, “Analytical Evaluation of 

Performance for Harmonic and Biharmonic Methods of Blind 

Phase Offset Estimation,” Proc. 13th IEEE Int. Symp. on 

Problems of Redundancy in Information and Control Systems, 

Saint-Petersburg, September 5–10, 2012, pp. 57–61. 

 

5784


