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ABSTRACT

This paper presents a phase likelihood-based method for auto-
matically identifying different phase-shift keying (PSK) mod-
ulations. This method identifies the PSK signals as the hy-
pothesis for which the likelihood function of phase difference
between nearby samples of the received signal is the maxi-
mum. This method does not need prior knowledge of car-
rier frequency or baud rate and can identify modulation types
at relatively low signal-to-noise ratio (SNR) and using small
number of input samples. Simulation results demonstrate that
this algorithm can identify BPSK, QPSK and 8PSK signals
with 100% accuracy with only 1000 symbols when the SNR
of the input signal is better than 7 dB. Additional simulation
results demonstrating the robustness of the algorithm to vari-
ations of the noise characteristics from the assumed Gaus-
sian model are also included in the paper. Performance com-
parisons indicate that the approach of this paper can achieve
100% accuracy in modulation identification at 5-7 dB lower
SNR than competing methods available in the literature.

Index Terms— Modulation identification, phase likeli-
hood function, PSK

1. INTRODUCTION

Automatic identification of the modulation type of a received
signal is important in many military and civil applications.
Blind modulation identification, i. e., modulation identifi-
cation without a priori knowledge of the carrier frequency,
symbol rate and other parameters of signal transmission, is
addressed in this paper. We assume that the received signal is
phase-shift keying (PSK) modulated, but do not assume any
prior knowledge of the order of PSK modulation.

In [1], the authors proposed a method for blind mod-
ulation recognition of PSK signals based on constellation
reconstruction. The results showed in the paper indicated
that this method can identify BPSK, QPSK and 8PSK with
100% accuracy at 15 dB signal-to-noise ratio (SNR) with

500 symbols. In [2], the authors implemented the Morlet
wavelet to obtain the phase for different PSK types including
BPSK, QPSK and 8PSK. The method performed the modu-
lation identification based on a likelihood function of phase
parameters extracted from Morlet wavelet transform of the
input signal. Simulation results indicated that this approach
can identify BPSK, QPSK and 8PSK with 100% recognition
rate when the SNR was more than 12 dB. A clustering-based
distribution fitting algorithm was used for modulation identifi-
cation in [3]. The methods assumed known carrier frequency
as well as other channel parameters. A survey of modulation
identification systems was given in [4]. Unfortunately, most
of the comparisons in the paper assumed knowledge of signal
characteristics such as carrier frequency. Such knowledge is
impractical in most applications of modulation identification.

In recent work, the authors of this paper presented a
likelihood-based algorithm for identifying QAM modulations
from received signals without knowing its carrier frequency
or baud rate [5]. Performance evaluation of the algorithm
indicated that the method was able to identify the modulation
types accurately at lower SNR and using shorter durations
of the received signal than previously possible. In this pa-
per, we present a method for blind identification of PSK
signals by deriving the likelihood function associated with
the phase difference of nearby samples. To the best of the
authors’ knowledge, phase likelihood-based algorithms have
not yet been developed for PSK identification. The likelihood
function of [2] is not directly evaluated for the signal phase.

As will be shown in Section 4 and Section 5, the method
of this paper performs substantially better than those compet-
ing algorithms available in the literatures. In addition, our
algorithm is robust to variations of the signal characteristics
from the signal model assumed in the derivation of the al-
gorithm. The rest of the paper is organized as follows: the
received signal model with pulse shaping is described in the
next section. In Section 3, the phase likelihood-based iden-
tification method is presented. Section 4 contains simulation
results demonstrating the probability of correct modulation
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identification in different SNRs and under several noise envi-
ronments. Finally, Section 5 contains the concluding remarks.

2. SIGNAL MODEL

We assume an additive white Gaussian channel under which
the general model for the received signal [6] is

y(t) = Re{
∑
k

(skgT (t− kTb))ej2πfct +N0(t)} (1)

where sk is a complex symbol sequence with sk = ak + jbk,
where ak and bk are the real and imaginary parts, Tb is the
symbol period, gT (t) is the pulse shape filter, fc is the carrier
frequency, and N0(t) is additive white Gaussian noise.

Applying Hilbert transformation to the received signals,
an appropriately sampled version of this signal is given by

y(n) =
∑
k

(skgT (nTs − kTb))ej2πfcnTs +N0(nTs) (2)

where Ts is the sampling period. N0(nTs) is the sampled ver-
sion of noise, which is a band-limited white Gaussian noise. If
we assume that the pulse shaping is such that the interference
between the nearby symbols is negligible in a small interval
around the midpoint of each baud [7], pulse shaping has lit-
tle influence on the phase of the signal in these intervals. Let
y(m) represent the mid-point of the mth symbol.

Then,

y(m) = smgT (0)e
j2πfcmTb +N0(mTb). (3)

The contribution to the phase of y(m) from the carrier
frequency changes with m. Obtaining the phase difference
between nearby samples of sub-sampled signal can avoid this
variability. Let

yd(m) = y(m)y∗(m− d) (4)

where d is an appropriately selected lag value, then

yd(m) = {smgT (0)ej2πfcmTb +N0(mTb)}
{s∗m−dg

∗
T (0)e

−j2πfc(m−d)Tb +N∗
0 ((m− d)Tb)}

= sms
∗
m−dg

2
T (0)e

j2πfcdTb +N0(mTb)N
∗
0 ((m− d)Tb).(5)

The phase of yd(m) is

θd(m) = θs + θc + α (6)

where θc = 2πfcdTb is the fixed value contributed by the
carrier frequency fc, θs is the phase difference between the
symbols and α is the phase difference contributed by noise.
In all the simulations in this paper, we selected d to be 1.

We can see from the above that, the phase difference be-
tween y(m) and y(m − d) will have a similar distribution
(within a constant shift contributed by the carrier frequency)

as the phase difference of the original symbol sequence. In
the next section, we will derive the likelihood function of the
phase difference between nearby samples of a PSK signal in
a broadband Gaussian noise assuming one sample per sym-
bol. In practice, we will compute the likelihood function of
the phase sequence after appropriately sub-sampling the re-
ceived signal so that the statistics of the signal approximately
matches those in the derivations.

3. PHASE LIKELIHOOD FUNCTION AND PSK
IDENTIFICATION

A schematic block diagram of the blind PSK identification
algorithm is given in Figure 1. The algorithm first makes
a coarse estimate of the baud rate, and then uniformly sub-
samples the received signal using the estimated baud rate. The
likelihood functions of the observed phase differences of the
sub-sampled signals are then calculated for each modulation
type. The system identifies the signal modulation type as the
corresponding hypothesis modulation type for which the log-
likelihood function is the maximum.

Fig. 1. Block diagram of modulation identification system.

3.1. Sub-sampling

In order to sub-sample the received signals, we need to esti-
mate the baud rate. The algorithm for estimating the baud rate
is the same as used in [5] and therefore not described here.

For the signal model in (2), the nearby samples most of-
ten correspond to the same symbol when the sampling rate is
high. In such situation, the phase difference between nearby
samples will be dominated by a fixed value contributed by
the carrier frequency. This can be avoided by sub-sampling
the received signals such that the nearby samples almost al-
ways come from different baud as shown in the signal model
in (3). Thus we sub-sample the received signals in such a way
that we pick one sample in each estimated symbol duration.

Starting with the maximum amplitude in the first several
estimated symbol durations (4 in the simulation results pre-
sented), the system sub-samples the received signal at the rate
of the estimated symbol duration (rounded to the nearest inte-
ger.) The phase differences between the adjacent samples of
the sub-sampled signal are computed and input to the likeli-
hood function calculation block. Additional phase difference
samples may be computed by changing the starting point for
the sub-sampling process. Since the phase values of the sym-
bols are almost the same throughout each baud, using these
additional calculations will mitigate the effect of noise on
modulation identification performance. The number of the
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Fig. 2. “Scatter plot” and phase difference distribution of a
QPSK signals before and after sub-sampling. Top left: “scat-
ter plot” for received signal with pulse shaping: SNR=20 dB,
N=10000; top right: histogram of phase difference for re-
ceived signal with pulse shaping; bottom left: “scatter plot”
after sub-sampling; bottom right: histogram of phase differ-
ence after sub-sampling

starting samples can be as many as the estimated symbol du-
ration. The likelihood functions calculated in our simulations
in Section 4 were based on the phase difference between ad-
jacent samples of all such possible sub-sampled sequences.

Figure 2 shows the effects of the sub-sampling process on
the phase difference sequences. The symbol sequence was
independent and identically distributed in this example. The
top left panel displays the scatter plot of the samples of the
received signal. The top right panel shows the phase differ-
ence between the adjacent samples. The impact of the carrier
frequency is clear in both figures. The effect of the pulse shap-
ing is also seen in the top left. The corresponding results after
sub-sampling by the estimated symbol duration are shown in
the bottom panels. The four groups of phase difference be-
tween QPSK symbols can be observed after sub-sampling.
Consequently, we can apply the likelihood functions derived
for modulation identification of signals without pulse shaping
to identify pulse shaped signals after the sub-sampling.

3.2. Phase Likelihood Function for PSK Signals

For two continuous sinusoids with the same frequency and
initial phase that are independently perturbed by white Gaus-
sian noise with variance σ2 and zero mean value, the probabil-
ity density function (PDF) of the phase difference α between
them [8] is given by

P (α) =
1

2π

∫ π
2

0

{sin 2β[1 + S

2
(1 + cosα sin 2β)]

e−
1
2S(1−cosα sin 2β)}dβ (7)

where S is SNR.
The distribution of phase difference θd in (6) is

P (θ) =
1

2π

∫ π
2

0

{sin 2β[1 + S

2
(1 + cos(θ − θs − θc) sin 2β)]

e−
1
2S(1−cos(θ−θs−θc) sin 2β)}dβ. (8)

For the signal model in (2), the phase difference between
symbols can take one of a finite number of values depend-
ing on the modulation order. Furthermore, assuming that the
symbols sequence is independent and identically-distributed,
the probability of these phase difference values can be prede-
termined for each PSK type.

Let there be N distinct phase difference values θs be-
tween symbols for the M th modulation type. Let the set
{θs(M, i); i = 1, 2, · · · , N} represent these values and let
wM [i] be the probability of the ith phase difference value for
the M th modulation type. The PDF for signal phase differ-
ence θ is

P (θ) =

N∑
i=1

P (θ|θs(M, i)wM [i],−π ≤ θ ≤ π,

=

N∑
i=1

∫ π
2

0

{[1 + S

2
(1 + cos(θ − θs(M, i)− θc) sin 2β)]

sin 2βe−
1
2S(1−cos(θ−θs(M,i)−θc) sin 2β)}wM [i]

2π
dβ (9)

where P (θ|θs(M, i) is the conditional PDF of the phase dif-
ference given that the modulation type is M .

LetHM represent the hypothesis that theM th modulation
type is the modulation type of the received signal. Given n
phase difference values θ1, θ2, . . . , θn of the received signals,
the likelihood function for HM [5] is

p(θ1, θ2, . . . , θn|HM ) =

n∏
i=1

P (θi|HM ). (10)

Combining (10) with (9), we obtain the likelihood func-
tion for the observed phase difference values given the hy-
pothesis of the M th modulation type as

p(θ1, θ2, . . . , θn|HM ) =
n∏
j=1

N∑
i=1

∫ π
2

0

{[1 + S

2
(1 + cos(θj − θs(M, i)− θc) sin 2β)]

sin 2βe−
1
2S(1−cos(θj−θs(M,i)−θc) sin 2β)}wM [i]

2π dβ. (11)

In order to simplify the calculations and since natural log-
arithm is monotonically increasing, we use the natural log-
arithm of (11) as the decision function for the identification
problem. That is, we choose the modulation type that maxi-
mizes the log likelihood function given by

lM =

n∑
j=1

ln(P (θj |HM )). (12)
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(a) Additive Gaussian noise. (b) Additive uniform noise. (c) Additive Laplacian noise.

Fig. 3. Probability of correct modulation identification with different SNRs for pulse shaped signals corrupted by different
noise; N=1000.

3.3. Estimation of Phase Contributed By The Carrier
Frequency and Noise Variance

In order to apply (12), the SNR and θc must be estimated.
θc has substantial influence on the PDF of the phase differ-
ence between samples. To ensure correct modulation identi-
fication, we consider θc as an unknown parameter that is es-
timated jointly with the modulation type by maximizing the
log-likelihood function over the modulation type and θc.

With estimated SNR as described in [5], we can com-
pute the log likelihood function for phase difference in (12).
As will be shown in the next section, even for moderately
small signal lengths (for example, 1000 symbols), the modu-
lation identification algorithm performs with small or no er-
rors above SNR values of 10 dB. Since the variable in the
exponential part of the likelihood function as shown in (11)
becomes very large for large SNR values, and can potentially
drive the calculations to outside allowable ranges, we em-
ployed a regularization procedure in the calculations where
SNR estimates above 15 dB were reset to 15 dB. This regu-
larization provided good results while ensuring that the algo-
rithm was operated in a stable manner.

4. PERFORMANCE EVALUATION

In this section, the performance of the algorithm is demon-
strated by the probability of correctly identifying each mod-
ulation type under several SNR conditions. We also evalu-
ate the performance of the algorithm in noise environments
different from the assumed Gaussian model. In all the sim-
ulations, a root raised cosine filter with parameter β = 0.5
was applied to the transmitted symbol sequence, N = 1000
symbols were used, and 100 independent runs were used to
calculate the probability of correct identification.

Figure 3 (a) shows the results when the noise is zero-mean
white and Gaussian noise. The system can distinguish be-
tween BPSK and QPSK modulation with 100% accuracy at 1
dB SNR. For 8PSK, 100% correct identification occurs when

SNR is at or above 7 dB.
Figures 3 (b) and (c) show the identification results in

noise environments different from the assumed Gaussian
model. The noise in Figure 3 (b) was zero-mean and uni-
formly distributed noise and the results in Figure 3 (c) were
obtained with the Laplacian noise with zero mean value.
We observe that the performances with uniform noise and
Laplacian noise are comparable to that with Gaussian noise.

5. CONCLUSION REMARKS

The likelihood-based modulation identification algorithm
presented in this paper performs substantially better than
alternate methods available in the literature. The system
identified BPSK, QPSK and 8PSK modulation with 100%
accuracy at 7 dB SNR with 1000 symbols. Simulation results
presented in [2] indicated that the method in that paper needed
more than 12 dB SNR to identify BPSK, QPSK and 8PSK
modulation with 100% accuracy with 1050 symbols. Our al-
gorithm also is able to combat the effects of the pulse shaping
in the signal model, which was not shown in [2]. Simulation
results shown in [1] indicate that its method needed 15 dB
SNR with 500 symbols for identifying BPSK, QPSK and
8PSK. In simulation results not included here, our method
accurately identified all three PSK signals at or above 8 dB
SNR using 500 symbols. Furthermore, the simulation results
presented indicated that the performance was robust under
different noise environments. Additional work on perfor-
mance evaluation under a variety of impairments as well as
algorithm refinements to reduce computational complexity
and to improve performance is underway at this time.
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