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ABSTRACT

This paper studies minimum mean square error (MMSE)–

based training signal design for MIMO channel estimation

with correlated disturbance (i.e., interference plus noise).

First, we consider training signal design for Kronecker–

structured MIMO channel estimation where both channel

and disturbance are assumed in Kronecker structures. We

prove the optimal training sequence structure for arbitrarily

Kronecker–structured MIMO channel estimation. Using the

optimal training sequence structure, we show that the MSE

minimization problem can be globally solved. Second, we

consider the training signal design problem in the case of

general channel and disturbance model (i.e., without Kro-

necker structure assumption). We propose a simple iterative

algorithm based on block coordinate descent method which

can keep the MSE nonincreasing at each iteration. Finally,

simulation results indicate good performance of the proposed

iterative algorithm by comparing with the optimal training

signal design method.

Index Terms— Training signal design, MIMO channel

estimation, MMSE, block coordinate descent.

1. INTRODUCTION

Accurate channel state information (CSI) is often desired to

improve the performance of MIMO communication. The CSI

is used in both transmitter and receiver design and common-

ly obtained by training–based channel estimation method. In

training–based channel estimation, the transmitter first send-

s a training signal which is known to the receiver and then

the receiver does channel estimation based on some criterion,

e.g., mean square error (MSE) minimization [1–5] or mutual

information (MI) maximization [6,7]. Here we focus on MSE

based MIMO channel estimation but our techniques also ap-

ply to MI-based MIMO channel estimation.
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To improve channel estimation performance, the training

signal should be properly designed. Hence, training signal

design (i.e., the MSE minimization problem) is a fundamen-

tal problem in training-based MIMO channel estimation and

has been widely investigated. Most previous works consid-

ered channel estimation for either noise–limited MIMO chan-

nel [1, 2] or interference–limited MIMO channel [3, 4], for

which, the training signal design problem can be reduced to

a convex optimization problem and the optimal structure of

the training sequence was explicitly derived. Recently, [5]

provided a framework for Kronecker–structured MIMO chan-

nel estimation in the presence of both interference and noise

(i.e., the so–called disturbance). For the disturbance case, [5]

showed that the training sequence has the same structure as in

the noise or interference case under a special Kronecker struc-

ture assumption. For the training signal design problem with

general Kronecker structure, [5] provided only a heuristic so-

lution inspired by the obtained training sequence structure in

the special Kronecker–sturctured case.

In this paper, we study MMSE-based training signal

design for MIMO channel estimation with correlated distur-

bance. First, we consider the general Kronecker structured

MIMO channel estimation, i.e., both channel and disturbance

are in general Kronecker structures. We prove that the op-

timal training sequence for arbitrarily Kronecker–structured

MIMO channel estimation has the same structure as in the

special Kronecker–sturctured case. Using the optimal train-

ing sequence structure, we show that the MSE minimization

problem can be globally solved. Second, we consider the

training signal design problem in the case of general chan-

nel and disturbance model (i.e., without Kronecker structure

assumption). We propose a simple iterative algorithm based

on block coordinate descent (BCD) algorithm [11]. The pro-

posed iterative algorithm can monotonically converge to a

stationary point of the MSE minimization problem.

Notations: scalars are denoted by lower-case letters; bold-

face lower-case letters are used for vectors, while bold-face

upper-case letters are for matrices. Rm×n (Cm×n) denotes

the space of m× n real (complex) matrices. For a matrix A,

Tr{A}, AT , AH , A∗ and Ai,j denote its trace, transpose,
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conjugate transpose, conjugate and the (i, j)-th entry, respec-

tively. (A)ijblk,n denotes the (i, j)-th submatrix obtained by

partitioning A into n × n blocks. The Kronecker product of

two matrices A and B is denoted by A ⊗ B. vec(A) de-

notes a column vector obtained by stacking the columns of

A. diag(x1, x2, . . . , xn) denotes a diagonal matrix with xi

being its i-th diagonal entry. In denotes n by n identity ma-

trix. x ∼ CN (µ,C) means that x is a circularly symmetric

complex Gaussian (CSCG) random variable with mean µ and

covariance matrix C. E{·} denotes expectation opertation.

2. SYSTEM MODEL AND PROBLEM

FORMULATION

Consider a point–to–point MIMO channel where a transmit-

ter equipped with Nt antennas transmits signal to a receiv-

er with Nr antennas subject to disturbance (i.e., interference

plus noise). We assume that the channel is flat and quasi–

static block fading with coherence time Tc. Thus the system

can be described as

y(t) = Hx(t) +w(t), t = 1, 2, . . . , Tc (1)

where x(t) ∈ CNt×1 and y(t) ∈ CNr×1 are the transmit-

ted signal and received signal at time slot t, respectively, and

w(t) ∈ CNr×1 represents the disturbance, H ∈ CNr×Nt is

the channel matrix which needs to be estimated.

In training-based channel estimation, the transmitter send-

s the training signal (also called pilot signal) which the receiv-

er knows beforehand at first Tp (< Tc) time slots and then the

receiver performs channel estimation based on the received

signal and some system statistical information. The channel

model in the training phase can be shortly written as

Y = HX+W (2)

which has a vectorized form

vec(Y) = (XT ⊗ INr
)vec(H) + vec(W) (3)

where X , [x(1) x(2) . . . x(Tp)] and similarly for Y and

W.

We assume that the channel matrix H follows Rayleigh

fading vec(H) ∼ CN (0,R) and the disturbance W fol-

lows the circularly symmetric complex Gaussian distribution

vec(W) ∼ CN (0,S). Moreover, we assume that the channel

is uncorrelated with disturbance. Under these assumption,

performing MMSE channel estimation based on (3) yields

the channel estimation error covariance matrix [5]

MSE ,
(

R−1 + (XT ⊗ INr)
HS−1(XT ⊗ INr)

)−1
. (4)

The training signal design problem is to find an X to mini-

mize the trace of the error covariance matrix. Mathematically,

it can be formulated as

min
X

Tr
{

(

R−1 + (XT ⊗ INr
)HS−1(XT ⊗ INr

)
)−1

}

s.t. Tr{XXH} ≤ Ptr

(5)

where Ptr is the total power used for channel training. Prob-

lem (5) is nonconvex. Moreover, the Kronecker term XT ⊗
INr

makes solving (5) a cumbersome task. For mathematical

convenience, we will reverse the order of X and INr
in the

Kronecker term and derive an equivalent problem of problem

(5) based on the following Theorem. The proof is simple and

omitted to save space.

Theorem 2.1. Let R̄ and S̄ be the covariance matrix of

vec(HH) and vec(WH) respectively. The MMSE channel

estimation error convariance matrix for vec(HH) based on

the vectorized conjugate transpose channel model

vec(YH) = (INr
⊗XH)vec(HH) + vec(WH) (6)

is

MSE =
(

R̄−1 + (INr
⊗XH)H S̄−1(INr

⊗XH)
)−1

(7)

and moreover

MSE = QMSEQH (8)

where Q is a permutation matrix [9] such that vec(H) =
Q

(

vec(HH)
)∗

.

Since we have Tr {MSE} = Tr
{

MSE
}

, problem (5) is

equivalent to

min
X

Tr
{

(

R̄−1+(INr
⊗XH)H S̄−1(INr

⊗XH)
)−1

}

s.t. Tr{XXH} ≤ Ptr

(9)

In this paper, we attempt to solve problem (9) (i.e., (5)) by

considering the special (Kronecker) channel and disturbance

model and the general channel and disturbance model.

3. OPTIMAL TRAINING SIGNAL DESIGN UNDER

KRONECKER MODEL

We here consider a commonly used channel and disturbance

model, i.e., bothS (or S̄) andR (or R̄) are in Kronecker struc-

tures. Specifically, we assume R̄ = RT
r ⊗ Rt where Rt ∈

CNt×Nt and Rr ∈ CNr×Nr represent the spatial correlation

at transmitter side and receiver side, respectively. Moreover,

we assume S̄ = ST
r ⊗Sq where Sr ∈ CNr×Nr represents the

received spatial correlation and Sq ∈ C
Tp×Tp represents the

temporal correlation. Under the Kronecker model assumption

and by using the identities (A ⊗B)(C ⊗D) = AC ⊗ BD

and (A⊗B)−1 = A−1 ⊗B−1 [9], problem (9) reduces to

min
X

Tr
{

(

R−T
r ⊗R−1

t + S−T
r ⊗ (XS−1

q XH)
)−1

}

s.t. Tr{XXH} ≤ Ptr.

(10)

Problem (10) is still difficult to solve. A special case of

problem (10) was considered in [5] by additionally assuming

that Rr and Sr are simultaneously diagonalizable. For this
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special case, [5] has shown that the optimal training sequence

has the following structure

X = UtPUH
q (11)

where P ∈ RNt×Tp is a rectangular diagonal matrix, and

Ut and Uq are unitary matrices, respectively obtained from

eigen-decomposition of Rt and Sq , i.e., Rt = UtΛtU
H
t and

Sq = UqΛqU
H
q (Λt and Λq are diagonal matrices with prop-

erly ordered eigenvalues). In this paper, we will show that the

optimal structure (11) holds for arbitrary combination of Rr

and Sr, and moreover problem (10) can be globally solved.

We have the following proposition.

Proposition 3.1. Let UrΛrU
H
r be the eigen–decomposition

of S
T
2
r R−T

r S
T
2
r with Λr , diag

(

λ
(r)
1 , λ

(r)
2 , . . . , λ

(r)
Nr

)

. Let

Λt , diag
(

λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
Nt

)

with descendingly or-

dered eigenvalues λ
(t)
1 ≥ λ

(t)
2 ≥ . . . ≥ λ

(t)
Nt

and Λq ,

diag
(

λ
(q)
1 , λ

(q)
2 , . . . , λ

(q)
Tp

)

with ascendingly ordered eigen-

values λ
(q)
1 ≤ λ

(q)
2 ≤ . . . ≤ λ

(q)
Tp

. The optimal solution to

problem (10) could have the following structure

X = UtPUH
q (12)

where P ∈ RNt×Tp is a rectangular diagonal matrix with√
pi on its main diagonal which can be obtained by solving

the following convex optimization problem

min
{pj≥0}

Nr
∑

i=1

M
∑

j=1

ρiλ
(q)
j

λ
(r)
i

λ
(q)
j

λ
(t)
j

+ pj

+

Nt
∑

i=1

ρi

λ
(r)
i

Nt
∑

j=M+1

λ
(t)
j

s.t.

M
∑

j=1

pj ≤ Ptr

(13)

where M , min(Nt, Tp) and ρi is the i-th diagonal entry of

the matrix UH
r ST

r Ur.

Proof. Recall the identities of Kronecker operation [9] (A⊗
B)(C⊗D) = AC⊗BD and (A⊗B)−1 = A−1⊗B−1. We

have (14) where (a) follows from the fact that S
T
2
r R−T

r S
T
2
r =

UrΛrU
H
r , Rt = UtΛtU

H
t and Ur⊗Ut is a unitary matrix,

(b) follows from the identity Tr{AB} = Tr{BA}, and (c) is

due to the fact that
(

Λr ⊗Λ−1
t + INr

⊗
(

UH
t XS−1

q XHUt

))−1

is a block diagonal matrix and ρiINt
is on the main diagonal

of the matrix UH
r ST

r Ur ⊗ INt
.

By defining P = UH
t XUq and noting that Tr{PPH} =

Tr{XXH}, problem (10) can be equivalently written as

min
P

Nr
∑

i=1

ρiTr

{

(

λ
(r)
i Λ−1

t +
(

PΛ−1
q PH

)

)−1
}

s.t. Tr{PPH} ≤ Ptr

(15)

Since Λt is in descending order and Λq is in ascending order,

we concludes by invoking Lemma 1 of [5] that P could be

a rectangular diagonal matrix. With some simple manipula-

tions, (15) reduces to (13), which completes the proof.

Remark 3.1. For the special case when Rr and Sr have the

same eigenvectors Ur, it is not difficult to verify that our re-

sult is consistent with the result of [5] by noting that problem

(13) is identical to problem (34) of [5] in this case.

Remark 3.2. For general combination of Rr and Sr, [5]

proposed a heuristic solution to (10) by assuming the solution

structure as (12) with

pj , max





√

λ
(q)
j

α
−

λ
(q)
j

λ
(t)
j





where α > 0 is chosen such that the power constraint holds

with equality. It is observed from (13) that this heuristic so-

lution is optimal to problem (10) when all λr
i are equal to 1.

This corresponds to the special case when Sr = Rr.

By performing KKT analysis on problem (13), we have

the following proposition.

Proposition 3.2. The solution to problem (13) must satisfy

the system of equations

Nr
∑

i=1

ρiλ
(q)
j

(

λ
(r)
i

λ
(q)
j

λ
(t)
j

+ pj

)2 = α (16)

for all j with α <
∑Nr

i=1

ρi

(

λ
(t)
j

)2

(

λ
(r)
i

)2
λ
(q)
j

and pj = 0 otherwise.

α is the Lagrange multiplier which is chosen such that the

power constraint with equality.

Note that, since the left-hand-side of (16) is a decreas-

ing function of pj , the system of equations (16) given α can

be solved by using Bisection method [10]. Moreover, since

problem (13) is convex, the optimal α can be also found by

using Bisection method . Hence, problem (13) can be easily

solved by two-tier Bisection method.

4. TRAINING SIGNAL DESIGN UNDER GENERAL

MODEL

In this section, we consider the general case where the corre-

lation matrix R̄ and S̄ are not Kronecker structured. In the

general case, it can be shown that problem (9) is equivalent

to1

min
X,G

Tr
{

(

I−GH
(

INr
⊗XH

))

R̄
(

I−GH
(

INr
⊗XH

))H
}

+Tr
{

GH S̄G
}

s.t. Tr(XXH) ≤ Ptr

(17)

1By canceling G in (17) (i.e., substituting (18) into the objective of prob-

lem (17)), we can reduce problem (17) to (9).
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Tr
{

(

R−T
r ⊗R−1

t + S−T
r ⊗

(

XS−1
q XH

))−1
}

=Tr

{

(

S
T
2
r ⊗ INt

)(

S
T
2
r R−T

r S
T
2
r ⊗R−1

t + INr
⊗
(

XS−1
q XH

)

)−1 (

S
T
2
r ⊗ INt

)

}

(a)
=Tr

{(

S
T
2
r ⊗ INt

)

(Ur ⊗Ut)
(

Λr ⊗Λ−1
t + INr

⊗
(

UH
t XS−1

q XHUt

))−1 (
UH

r ⊗UH
t

)

(

S
T
2
r ⊗ INt

)}

(b)
=Tr

{

(

UH
r ST

r Ur ⊗ INt

) (

Λr ⊗Λ−1
t + INr

⊗
(

UH
t XS−1

q XHUt

))−1
}

(c)
=

Nr
∑

i=1

ρiTr

{

(

λ
(r)
i Λ−1

t +
(

UH
t XS−1

q XHUt

)

)−1
}

(14)

in the sense that the two problems has the same optimal so-

lution X. Actually, the objective of problem (17) is the MSE

when Linear MMSE is used for estimation of vec(HH) based

on (6). As compared to problem (5) or (9), problem (17) is

easier to solve by using block coordinate descent method [11].

In the BCD method, we alternately run the following two

steps. First, we solve problem (17) for G while fixing X,

yielding the optimal G

G=
((

INr
⊗XH

)

R̄ (INr
⊗X)+S̄

)−1 (
INr

⊗XH
)

R̄ (18)

Second, we solve problem (17) for X while fixing G, equiv-

alently, solve the following convex quadratic optimization

problem

min
X

Tr
{

(

I−GH
(

INr
⊗XH

))

R̄
(

I−GH
(

INr
⊗XH

))H
}

s.t. Tr
{

XXH
}

≤ Ptr

(19)

The difficulty in solving problem (19) is the Kronecker prod-

uct term INr
⊗ XH . Fortunately, by block matrix computa-

tion, we can reformulate problem (19) as follows

min
x

xHAx− xHb− bHx+Tr{R̄}

s.t. xHx ≤ Ptr

(20)

where x , vec(X), b ,
∑Nr

i=1 vec
(

(

R̄GH
)ii

blk,Nr

)

, and

A ,

Nr
∑

i=1

Nr
∑

j=1

(

(

GGH
)ji

blk,Nr

)T

⊗ R̄
ij
blk,Nr

+ γINtTp
.

Note that, problem (20) can be easily solved by using Bisec-

tion method. Therefore, the BCD algorithm for problem (17)

is efficient. Moreover, the proposed iterative algorithm can

keep MSE nonincreasing at each iteration and monotonically

converge to a stationary point of problem (17) [11].

5. NUMERICAL EXAMPLES

In this section, we numerically evaluate the performance

of the proposed training signal design methods. To offer a

benchmark for performance evaluation of the proposed BCD

algorithm, we only consider Kronecker-structured MIMO

channel estimation in our simulations. We set Nt=Nr=Tp=4.

We use the following exponential model [8] to generate

a correlation matrix C: Ci,j=rj−i, ∀j>i where r is the

normalized correlation coefficient with |r|<1. Specifi-

cally, we set the correlation coefficients rt=0.5e−j0.42π,

rr=0.65e−j0.83π, rs=0.3e−j0.22π and rq=0.99e−j0.65π to

generate matrices Rt, Rr, Rs and Rq , respectively.

Figure 1 shows the normalized MSE of different training

signal design methods versus the total training power where

the normalized MSE is defined as
E{‖H−ĤMMSE‖2}

Tr{R} . It is

seen that, there exists a substantial performance gap between

the optimum training signal design method and the heuristic

method (see remark 3.2 or Heuristic 1 in [5]) when the total

training power is small. Moreover, it is observed that, the per-

formance of the proposed iterative algorithm coincides with

that of the optimal training signal design method, implying

good performance of the proposed iterative algorithm.
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Fig. 1. Normalized MSE Vs. total training power Ptr.

6. CONCLUSION

This paper considers training signal design for MIMO chan-

nel estimation with disturbance. We have proposed optimal

training signal design method for the case of Kronecker–

structured MIMO channel estimation and an iterative algo-

rithm for the case of general channel and disturbance model.

Simulations show that the proposed iterative method could

work as well as the optimal training signal design method.
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