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ABSTRACT

We consider optimized design of training sequences, given knowl-
edge of the channel and noise statistics. Recently, pilot designs
considering the end performance of the channel estimate, have been
proposed, both optimizing the average performance and the perfor-
mance at a certain outage level. Unfortunately, these problems, as
well as previously proposed designs optimizing the channel estima-
tion MSE, are non-convex for arbitrary channel and noise correla-
tions so additional assumptions have been introduced in the literature
to be able to find tractable solutions. Here, we show that arbitrarily
correlated scenarios can easily be handled by resorting to alternat-
ing optimization, for all the previously mentioned problem formu-
lations. Furthermore, we numerically compare the average and out-
age performance of the proposed algorithms, to alternative solutions
adopted from the literature.

1. INTRODUCTION

Channel state information (CSI) in some form is needed in almost
all wireless communication systems, especially in MIMO systems.
Primarily, the CSI is used at the receiver to equalize and detect the in-
coming data, but it can also be used at the transmitter side for precod-
ing and scheduling, for example. MIMO channel estimation is typ-
ically done using pilot sequences that are spatially white, which has
been shown to be the best choice according to several criteria [1, 2].
However, if prior knowledge is available about the channel state in-
formation, the pilot signal can be adapted to improve the estimation
accuracy. Such optimized designs have among others been consid-
ered for correlated channels in white noise [3, 4], for uncorrelated
channels in colored noise [5] and for the general case of correlated
channels in colored noise [6, 7, 8]. All work mentioned so far con-
siders the mean square error (MSE) of the resulting channel estimate
as the optimization criterion. A few other criteria have also been pro-
posed, such as optimizing the mutual information between the CSI
and the received training data [9].

Minimizing the MSE of the channel estimate does not neces-
sarily provide the optimal end user performance. Inspired by the
system identification literature, such as [10], the recent paper [11]
shows how to incorporate the application in the pilot design, using a
cost function that reflects the impact of the channel estimation error
on the end performance. Two main strategies are proposed, one re-
lated to the average performance and one related to the probability
that the performance is good enough.

A common problem of all the mentioned pilot design strategies
is that an easily computable solution only is available under certain
conditions on Kronecker structures both in the channel and noise
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covariance matrices, that may be questionable in real-world scenar-
ios. Here, we show that the optimization problems resulting from the
different pilot design strategies can be solved for general (also non-
Kronecker) correlation structures, using alternating optimization. To
illustrate the pros and cons of this alternating optimization approach,
we provide numerical comparisons to a number of alternatives from
the literature, both to optimal solutions for scenarios where such can
be found and to reasonable engineering solutions for scenarios where
no optimal solution can be found in the literature.

2. PRELIMINARIES

We consider a single frequency flat MIMO link (e.g. one subcarrier
in an OFDM system), with Nt transmit and Nr receive antennas,

y(t) = Hx(t) + n(t) , (1)

with transmitted signal x(t), received signal y(t) and additive in-
terference plus noise n(t). During the training phase, a length B
pilot signal, p(1),p(2), . . . ,p(B), is transmitted. Collecting the B
transmitted pilot vectors into a matrix P ∈ CNt×B , the total re-
ceived signal during the training phase is

Y = HP+N . (2)

Assuming that the long-term channel statistics is known as h =
vec{H} ∈ CN(0,R) and similarly that the interference plus noise
statistics is vec{N(t)} ∈ CN(0,S), we form a linear channel esti-
mate of the form

ĥ = vec{Ĥ} = W vec{Y} = W(P̃h+ n) , (3)

where P̃ = PT ⊗ I, which results in an error covariance matrix of

CMSE = E[(ĥ− h)(ĥ− h)H ]

= (WP̃− I)R(WP̃− I)H +WSWH (4)

In particular, the MMSE channel estimate

W = (R−1 + P̃HS−1P̃)−1P̃HS−1 , (5)

gives the MMSE covariance matrix

CMSE = (R−1 + P̃HS−1P̃)−1 . (6)

2.1. Problem Formulations

Our goal is to determine the optimal training sequence P, given a
constraint on the total training energy. However, depending on how
the channel estimate will be used, it is not necessarily optimal to
aim for a minimal channel estimate MMSE. Instead, we follow [11]
and consider an end performance metric M(Ĥ) of the equalizer or
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precoder or whatever application the channel estimate is intended
for and define our cost metric as the difference in end performance
between using the channel estimate and using the true channel,

J(h̃) =M(Ĥ)−M(H) . (7)

As is shown in [11], this cost metric can often be well approximated
by a quadratic expression of the form

J(h̃) = h̃HIadmh̃ . (8)

Since J(h̃) itself is stochastic, we study the following optimization
criteria.

Average Performance Optimize the average performance

min
P

E[J(h̃)] = Tr[IadmCMSE]

s.t. ‖P‖2F ≤ Pmax

(9)

Outage Performance Maximize the chance α that the estimation
error is inside an admissible region J(h̃) ≤ 1/γ, for some
desired accuracy γ.

max
P,α

α

s.t. Pr[J(h̃) ≤ 1/γ] = α

‖P‖2F ≤ Pmax

(10)

Confidence Ellipsoids Since the outage formulation is hard to
handle, we resort to bounding techniques. An approach
proposed in [10, 11] is to define an ellipsoidal confidence
region for which the probability is easy to calculate, D =
{h̃HC−1

MSEh̃ ≤
1
2
χ2
α(2NtNr)}1 and replace the constraint

Pr[J(h̃) ≤ 1/γ] = α by the tighter constraint that J(h̃) ≤
1/γ for all h̃ ∈ D. As shown in [11], the resulting pilot
design problem can be written as

max
P,c

c

s.t. C−1
MSE � cIadm

‖P‖2F ≤ Pmax ,

(11)

where c is related to alpha through c = γχ2
α(2NtNr)/2.

An alternative that often works better for practically useful
outage levels α is to use a Markov bound to turn (10) into (9),
see [12] for details.

2.2. Solutions from the Literature

Most existing literature considers the channel estimate MSE Tr[CMSE]
as the optimization criterion. Even for this special case (Iadm = I),
problem (9) is in general non-convex. However, if the following
additional assumptions are imposed on the scenario,

R = RT
T ⊗RR, S = STQ ⊗ SR, RR = SR , (12)

the problem can be diagonalized and the optimal solution can be
found in closed form (as a function of a single Lagrange multiplier
to be determined), see [7]. In (12), all entities with subscript T, R
and Q have dimensionsNt×Nt, Nr×Nr andB×B, respectively.

1χ2
α(n) denotes the α percentile of a χ2 distribution with n degrees of

freedom.

The constraint RR = SR can be relaxed as long as the two matrices
share the same eigenvalues, see [8].

The application oriented pilot design formulations of Sect. 2.1
have been analyzed in [11]. Under the assumptions (12) and the
additional assumptions Iadm = ITT ⊗ IQ, it is possible to con-
vert the converse (minimizing ‖P‖2F given c) confidence region
formulation (11) into a convex problem with closed-form solution.
For the average performance formulation (9), yet another assump-
tion R−1

T = IT is needed to turn the problem into diagonalizable
form with a closed form solution, up to an unknown permutation of
the eigenvalue ordering that has to be found using a combinatorial
search.

3. ALTERNATING OPTIMIZATION SOLUTIONS

As has been explained, solutions to the pilot design problems have
only been presented under restrictive assumptions on the joint corre-
lation structures of the channel and the interference. Here, we show
that a numerical solution can be found easily for generic correla-
tions if we resort to alternating optimization techniques. The trick is
to view both P and the estimation parameters W as free optimiza-
tion variables and use the generic MSE matrix expression (4) instead
of the concentrated expression (6). The jointly optimal choice of P
and W will still result in the same solution and therefore alternat-
ing optimization (block coordinate descent) will at least find a local
optimum of the optimization problem. Convergence is guaranteed,
since the cost function is improving in each iteration. The advantage
of the alternating optimization approach is that each subproblem is
convex and easy to solve for arbitrary R, S and Iadm. The details
are provided below.

Note that these proposed algorithms also apply to the scenario
considered in [6, 7, 8], by setting Iadm = I.

3.1. Average Performance

For a given P, the optimal choice of W in (9) is (5), see for ex-
ample [13]. Introduce the notation p = vec{P} and let M be
the N2

rNtB × NtB selection matrix such that vec{PT ⊗ INr} =
M vec{P} for all P ∈ CNt×B . For given W and using the re-
lationships Tr[AHB] = vecH{A} vec{B} and vec{ABC} =
(CT ⊗A) vec{B}, the cost function of (9) can then be written as

Tr[IadmCMSE] =pHMH(RT ⊗WHIadmW)MpH

− pHMH vec{WHIadmR}

− vecH{WHIadmR}Mp+ const.

Introducing a Lagrange multiplier λ for the power constraint, it then
follows that the optimal P given W is given by

vec{P} =
(
MH(RT ⊗WHIadmW)M+ λI

)−1

MH vec{WHIadmR} , (13)

where bisection or some other line search can be used to find the λ
such that ‖P‖2F = Pmax. It is easy to show that ‖P‖2F is mono-
tonically decreasing in λ. It is also easy to show that the optimal
λ is in the interval

[
0, ‖MH vec{WHIadmR}‖/

√
Pmax

]
, which

therefore can be used as the starting interval for the bisection.
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Fig. 1. Average performance in a scenario with known solution to
the confidence region problem.

3.2. Using Confidence Regions

For any given P, the MMSE solution (5) minimizes CMSE (in the
sense of the Löwner order) and is therefore optimal also in (11).
For a given W, note that the constraint of (11) is equivalent to
c−1I−1

adm � CMSE, i.e.

c−1I−1
adm −WSWH � (WP̃− I)R(WP̃− I)H (14)

Using a Schur complement and introducing t = c−1, we can there-
fore reformulate (11) as

min
P,t

t

s.t.

 tI−1
adm −WSWH WP̃− I

P̃HWH − I R−1

 � 0

‖P‖2F ≤ Pmax ,

(15)

which is a convex problem since P̃ is linear in P and can be numer-
ically solved using convex solvers like CVX [14, 15].

4. NUMERICAL EXAMPLES

The numerical examples reported here are primarily intended to
compare the different algorithmic approaches, but not necessarily to
show the end performance of any practical application or propaga-
tion scenario. Since the most interesting results are expected in sce-
narios with reasonably high correlation, all covariance matrices and
the matrices Iadm, IT and IQ where chosen randomly by generat-
ing an i.i.d. complex Gaussian matrix G and forming the Hermitian
positive semidefinite matrix as G diag{[1, 2, . . . , n]}GH , where n
denotes the dimension of the matrix in question. For each generated
scenario, Pmax was selected to obtain the desired training SNR,

SNR =
Pmax Tr{R}
Nt Tr{S}

In all the experiments, Nt = 5, Nr = 3 and B = 6 were used. The
plotted results are averaged over 100 scenario realizations.

0 0.5 1 1.5 2

x 10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Target performance, j

P
r[
J
(ĥ
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Fig. 2. Outage performance (complementary cumulative distribution
function) in a scenario with known solution to the confidence region
problem. SNR=10dB.

The following approaches have been compared.

Aver. perf. alt. opt. The proposed alternating optimization ap-
proach from Sect. 3.1, using a (single) random initialization.

Conf. reg. alt. opt. The proposed alternating optimization ap-
proach from Sect. 3.2, using a (single) random initialization.

Conf. reg. closed form The closed form solution to the converse
of (11) from [11], combined with a bisection search over c to
obtain the target training power Pmax. Only applicable under
additional assumptions.

Aver. perf. nonlin. Using a standard non-linear optimization pro-
cedure to solve (9). The fmincon routine in Matlab was
used, with the interior point algorithm and a (single) random
initialization.

MMSE The closed form solution from [6, 7, 8] optimizing the un-
weighted MMSE performance, i.e. using Iadm = I in (9).

White Using a spatially white P with columns taken from a scaled
FFT matrix.

In figures plotting the outage performance, the exact probabili-
ties have been calculated using Laplace methods (moment generat-
ing functions).

4.1. Scenarios with Known Solutions

We first consider scenarios where optimal solutions are known from
the literature, namely where (12) holds. We therefore generated ran-
dom RT , RR, ST , IT and IQ as described above, form R, S
using (12) and setting Iadm = ITT ⊗ IQ.

Fig. 1 shows the average performance as a function of SNR.
As can be seen, using an optimized pilot gives substantial gain
compared to using a standard white pilot or just optimizing the un-
weighted estimation MMSE. The fact that the closed form solution
for the confidence region approach outperforms not only the alter-
nating optimization approach for the same formulation but also that
for the average performance (which should give the best result in
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Fig. 3. Average performance in a scenario with unstructured R, S
and Iadm.

this plot if it found the global optimum), indicates that the proposed
alternating optimization techniques unfortunately seem to get stuck
in local optima. Still, it mostly finds a better local optimum than
the generic fmincon routine. Using more random initial points
is expected to improve the performance, but at the expense of an
increased computational complexity. Fig. 2 shows the outage perfor-
mance for the same methods and scenario. Apart from confirming
the conclusions from Fig. 1, it also illustrates the point made in [12]
that the confidence region approach does not provide a tight approx-
imation of the outage performance, unless the outage level 1 − α is
extremely small.

4.2. Arbitrarily Correlated Scenarios

As a second example, we consider arbitrary R, S and Iadm, gen-
erated at random as described at the top of Sect. 4. As an ad-hoc
engineering solution, we used the strategy of [16] to find approx-
imate Kronecker factorizations minimizing ‖Iadm − ITT ⊗ IQ‖2F
and ‖R − RT

T ⊗ RR‖2F + ‖S − STQ ⊗ RR‖2F , respectively. The
latter criterion is equivalent to∥∥∥∥[RS

]
−
[
RT
T

STQ

]
⊗RR

∥∥∥∥2
F

and can therefore be found using a straightforward generalization
of [16]. The resulting Kronecker factors were used as input to the
closed form confidence region solution from [11]. Figs. 3 and 4
show that the proposed alternating optimization techniques provide
the best performance out of the evaluated techniques, both in terms
of average and outage performance. In these examples, there is typ-
ically a large mismatch between the true parameters and the Kro-
necker approximations, which explains why the closed form solution
performs so bad.

5. CONCLUSIONS

After a brief review of previous results on optimal training signal
design for MIMO channel estimation, we have shown how the re-
sulting optimization problems can be solved without the commonly
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Fig. 4. Outage performance in a scenario with unstructured R, S
and Iadm. SNR=10dB.

needed structural constraints on the involved matrices. The proposed
method is based on the simple observation that the problems are
more tractable if the common trick of concentrating the MSE co-
variance matrix with respect to the estimation weighting matrix, is
not used. By keeping this weighting matrix as an optimization pa-
rameter, we have shown how all main problem formulations from
the literature can be solved using alternating optimization. The nu-
merical examples show that the proposed approach provides good
performance in all studied scenarios and that even if they do not al-
ways find the global optimum, they often find a better local optimum
than using generic non-linear solvers.
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