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ABSTRACT

The problem of jamming on a multiple-input multiple-output

(MIMO) Gaussian channel is investigated. We show that the

existing result based on the simplification of the system model

by neglecting the jamming channel leads to losing impor-

tant insights regarding the effect of jamming power and jam-

ming channel on the jamming strategy. We find a closed-form

optimal solution for the problem under some positive semi-

definite condition without considering simplifications in the

model. If the condition is not satisfied and the optimal so-

lution may not exist in closed-form, we find a suboptimal

solution in closed-form as a close approximation of the op-

timal solution. Simulation results verify the effectiveness of

the proposed solutions.

Index Terms— Jamming, MIMO, closed-form solution

1. INTRODUCTION

The threat of jamming in wireless communications is becom-

ing increasingly significant as wireless communication sys-

tems prevail in our everyday life [1]. Thus, it has been stud-

ied in many research works and one of the relevant research

interests is to investigate the optimal jamming strategy from

the perspective of a jammer [2]- [6]. Such perspective helps

to reveal the effect of jamming on legitimate communications

in the worst case.

When a jammer has multiple antennas, it can maximize

the effectiveness of jamming by optimizing its jamming sig-

nal. The optimal jamming on multiple-input multiple-output

(MIMO) channels is investigated in [7]- [10]. It is shown

in [7] that without knowledge of the target signal or its co-

variance, the jammer can only use basic strategies of allo-

cating power uniformly or maximizing the total power of the

interference at the target receiver. In [8], the transmit strate-

gies of a legitimate transmitter and a jammer on a Gaussian

MIMO channel are investigated under a game-theoretic mod-

eling with a general utility function. It is assumed that the

jammer and the legitimate transmitter have the same level of

channel state information (CSI), i.e., both uninformed, both

with statistical CSI, or both with exact CSI. The optimal trans-

mitted strategies of the legitimate transmitter and the jammer

are represented as solutions to different problems versus dif-

ferent types of CSI. The worst-case jamming on MIMO mul-

tiple access and broadcast channels with the covariance of the

target signal and all channel information available at the jam-

mer is studied in [9] based on game theory. Some properties

of the optimal jamming strategies are characterized through

the analysis of the Nash equilibrium of the game. The neces-

sary condition for optimal jamming on MIMO channels with

arbitrary inputs when the covariance of the target signal and

all channel information are available at the jammer is derived

in [10]. For the case of Gaussian target signal, the solution of

optimal jamming is given in closed-form. However, it is de-

rived without considering the jamming channel. As a result,

the system model is simplified by implicitly assuming that

the received jamming signal at the target receiver is exactly

the same as the transmitted jamming signal at the jammer.

With the objective of providing a general solution with-

out simplifications of the system model, this work revisits

the problem of the optimal jamming on a MIMO Gaussian

channel with Gaussian input. The resulting problem becomes

more complicated and the method for deriving the optimal so-

lution in [10] no longer applies. It will be shown that, unlike

the case without considering the jamming channel, the opti-

mal solution may or may not exist in closed-form depending

on the power limit of the jammer. The optimal solution will be

given if it exits in closed-form and the solution in [10] will be

shown to be a special case of our general solution. It is further

shown that the existence of the closed-form optimal solution

is not guaranteed in the general case. We then propose a sub-

optimal solution also in closed-form as an alternative strategy

for the jammer so that the complexity of finding the solution

remains low. Simulation results will demonstrate that the pro-

posed suboptimal solution is in fact very close (if not equal)

to the optimal solution.

2. SYSTEM MODEL

A legitimate transmitter with nt antennas sends a signal s to

a receiver with nr antennas. The elements of s are complex

Gaussian with zero mean and covariance Qs. A jammer with

nz antennas attempts to jam the legitimate communication by
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transmitting a jamming signal z to the receiver. Denote the

legitimate channel (from the legitimate transmitter to the re-

ceiver) as Hr and the jamming channel (from the jammer to

the receiver) as Hz. In the presence of the jamming signal,

the received signal at the legitimate receiver is expressed as

y = Hrs+Hzz+ n (1)

where n is the noise at the legitimate receiver with zero mean

and covariance σ2I with I denoting identity matrix. Note that

given the Gaussian channel and Gaussian target signal, the

worst-case form of jamming signal is also Gaussian [12]. De-

note the covariance of z as Qz. Then the information rate of

the legitimate communication under jamming is given as [7]

RJ = log |I+HrQsH
H
r (HzQzH

H
z + σ2I)−1| (2)

where | · | denotes the determinant of a square matrix and (·)H

stands for the Hermitian transpose. The jammer aims at de-

creasing the above rate as much as possible given its power

limit Pz. It is assumed that the jammer has the knowledge of

Hr, Hz, and Qs, but does not know the exact s (as in [9]-

[11]). The jammer can use the available knowledge to find

the optimal Qz among Hermitian and positive semi-definite

(PSD) matrices such that the rate in (2) is minimized. The

above assumption makes it possible to investigate the theo-

retic bound of the worst-case jamming. Note that, practically,

jammer may obtain the knowledge of Hr during the channel

feedback between the legitimate transceiver [11].

3. CLOSED-FORM OPTIMAL SOLUTION UNDER

PSD CONDITION

The optimal jamming strategy can be found by solving the

following problem

min
Qz

RJ (3a)

s.t. Tr{Qz} ≤ Pz (3b)

where Tr{·} denotes the trace and the PSD constraint Qz � 0
is omitted for brevity. The solution in [10] is obtained by

assuming Hz = I and then making the corresponding term in

the determinant in (2) diagonal via choosing Qz. However, it

can be seen that the term in the determinant in general cannot

be made diagonal via Qz when Hz 6= I. As a result, the

method in [10] is invalid here. For finding the solution to this

problem, the following two situations need to be considered

• S1: The matrix HrQsH
H
r is positive definite (PD);

• S2: The matrix HrQsH
H
r is PSD but not PD.

In the sequel, the situations S1 and S2 are considered and the

solutions are found for each of them.

Denote the singular value decomposition (SVD) of Hz as

Hz = UzΩzV
H
z . Define also B , UH

z HrQsH
H
r Uz. It

is worth noting that B has the same rank as HrQsH
H
r . For

finding the optimal jamming strategy, we first introduce the

following lemma.

Lemma 1: Given a Hermitian matrix J ≻ 0, the following

optimization problem over positive definite matrix X

min
X

log |I+ JX−1| (4a)

s.t. Tr{X} ≤ 1 (4b)

X � 0 (4c)

has the following closed-form solution

X = UJ

√

ΛJ

λ
+

Λ2
J

4
UH

J −
J

2
(5)

where UJ and ΛJ are the eigenvector and eigenvalue matri-

ces, respectively, obtained from the eigenvalue decomposition

(EVD) J = UJΛJU
H
J , and λ is chosen so that the power con-

straint (4b) is satisfied with equality.

The proof as well as all other proofs is omitted due to

space limitations while they can be found in [13] in details.

Denote the rank of Hz as rz and assume without loss of

generality that the first rz elements on the main diagonal of

the matrix Ωz are non-zero. Denote the rz × rz block of Ωz

that has these rz diagonal elements as Ω+
z . Using the defini-

tion of B and the SVD of Hz, the objective function in (2)

can be rewritten as

RJ = log |I+B(ΩzQ̂zΩ
H
z + σ2I)−1| (6)

where

Q̂z , VH
z QzVz. (7)

Let us define the equivalent channel as

Ω̃z ,

[

rz nr−rz

rz Ω+
z 0

nr−rz 0 I

]

(8)

where 0 represents all-zero matrix, and the equivalent jam-

ming covariance matrix as

Q̃z ,

[

rz nr−rz

rz Q′

z 0

nr−rz 0 0

]

(9)

where Q′

z is the part of the matrix to be determined. The

equivalent channel Ω̃z has the size nr ×nr, and it extends the

size of Ωz if nr > nz and reduces it if nr < nz. Correspond-

ingly, the allocation of jamming power in (9) represented by

Q′

z is limited to at most rz dimensions corresponding to the

rz non-zero eigenvalues of Ω+
z . It can be seen that allocating

jamming power anywhere else has no effect on the received

signal and only leads to jamming power waste. Therefore, the

optimal structure of Q̂z has to be in the form

Q̂z =

[

nr nz−nr

nr Q̃z 0

nz−nr 0 0

]

=

[

rz nz−rz

rz Q′

z 0

nz−rz 0 0

]

. (10)
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Given the above definitions, we have the following theo-

rem for the situation S1.

Theorem 1: The problem (3) has the following closed-

form optimal solution in the situation S1

Q′

z = UÃ

√

1

λ
ΛÃ +

1

4
Λ2

Ã
UH

Ã
−Ω+

z

−1

(

1

2
B̃+ σ2I

)

Ω+
z

−H

(11)
under the condition that the above matrix Q′

z is PSD, where

B̃ , B11 −B12(σ
2I+B22)

−1B21 (12)

with B11, B12, B21, and B22 given by

B =

[

rz nz−rz

rz B11 B12

nz−rz B21 B22

]

(13)

UÃ and ΛÃ are obtained from the EVD Ã = UÃΛÃUH

Ã
with

Ã , Ω+
z

−1
B̃Ω+

z

−H
(14)

and λ is chosen such that the jammer’s power constraint is

satisfied with equality.

With the given optimal Q′

z, the optimal Qz can be ob-

tained from (7) and (10). In the special case studied in [10],

Hz and consequently Uz, Ωz, and VH
z are all equal to I.

Therefore, Ã and Ω+
z simplify to B̃ and I, respectively.

Moreover, it is also assumed that UH
z HrQsH

H
r Uz has full

rank, which further simplifies the case so that B̃ = B. Then

it is easy to check that the solution in (11) simplifies to the

scalar-form solution in [10].

Theorem 1 gives the closed-form optimal solution of the

problem (3) under the condition that Qz, or equivalently, Q′

z

given by (11) is PSD. However, it is possible that Q′

z is in-

definite. It can happen when the jammer’s power limit Pz is

sufficiently small. It can be seen that 1/λ decreases when

the jammer’s power limit becomes smaller. As a result, Q′

z

has a larger chance to be indefinite and thereby invalid. For

a given power limit Pz, whether Q′

z in (11) is PSD depends

on the channel Hz, or essentially, the elements of Ω+
z . It can

be shown that, for a fixed Pz and Ω+
z such that Q′

z given by

(11) is indefinite, there always exists a Ω̃+
z with Tr{Ω̃+

z } =
Tr{Ω+

z } but different elements, such that Q′

z is PSD if Ω+
z is

substituted by Ω̃+
z . Therefore, the power limit of the jammer

as well as the gains of the eigen-channels determine whether

or not Q′

z is PSD. The above fact, which reveals the effect

of the jamming power limit and the jamming channel on the

jammer’s strategy, has not been observed before as the jam-

ming channel has been neglected.

For the situation S2, the following theorem is in order.

Theorem 2: The problem (3) has the following closed-

form optimal solution in the situation S2

Q′

z = UÃ1

√

1

λ
Λ+

Ã
+
1

4
Λ2

Ã+
UH

Ã1
−

1

2
UÃ1

Λ+

Ã
UH

Ã1

−σ2Ω+
z

−1
Ω+

z

−H
(15)

under the condition that the above Q′

z is PSD, where UÃ1

and Λ+

Ã
are obtained from the following EVD

Ã=UÃΛÃUH

Ã
=

[

r
Ã

rz−r
Ã

UÃ1
UÃ2

]

[

Λ+

Ã
0

0 0

][

UH

Ã1

UH

Ã2

]

(16)
with rÃ denoting the rank of Ã.

With the given optimal Q′

z, the optimal Qz can be ob-

tained from the definitions (7) and (10).

It can be shown that if Ã has full rank, then (15) becomes

equivalent to (11). Similar to the situation S1, Qz given by

(15) can be indefinite depending on the jammer’s power limit

Pz and the jamming channel Ω+
z . To tackle this problem, in

the next section we find a suboptimal solution of the problem

(3) as a close approximation of the optimal solution for the

case when Q′

z given in (11) or (15) is indefinite.

4. SUBOPTIMAL JAMMING STRATEGY IN

CLOSED-FORM

In order to solve the problem when the closed-form in (11) or

(15) is invalid, two approaches can be used. The first one is

to find the optimal solution numerically. However, due to the

complexity consideration, it is preferred if a suboptimal solu-

tion can be found in a closed-form. Such suboptimal jamming

strategy is characterized in the following theorem.

Theorem 3: A suboptimal closed-form solution closely

approximating the optimal solution to the considered problem

(3) in the situation S1 is given as

Q′

z = UÃ

√

1

λ̃
ΛÃ +

1

4
Λ2

Ã
UH

Ã
−

1

2
Ã+ (ǫ̃ − 1)D0 (17)

where D0 , σ2Ω+
z

−1
Ω+

z

−H
, and ǫ̃ and λ̃ are the optimal

solutions to the problem

min
ǫ,λ

ǫ (18a)

s.t. UÃ

√

1

λ
ΛÃ+

1

4
Λ2

Ã
UH

Ã
−
1

2
Ã+(ǫ−1)D0 � 0 (18b)

Tr

{

√

1

λ
ΛÃ+

1

4
Λ2

Ã
−
1

2
Ã+(ǫ−1)D0

}

= Pz (18c)

0 ≤ ǫ ≤ 1 (18d)

λ > 0. (18e)

It is worth mentioning that the constraints (18b)-(18e)

specify a non-empty feasible set.

The above suboptimal solution given by (17) is proposed

based on the following reasons. First and most important, it

can be shown that Q′

z given by the above suboptimal solution

is the same as the Q′

z given by (11) when the latter one is

PSD (and consequently ǫ̃ = 0). Therefore, the use of (17) is

sufficient for calculating the jamming strategy in all cases be-

cause (17) gives the optimal solution (11) when (11) is PSD
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Fig. 1. Comparison of RJ versus Pz with Qz given by (11),

the optimal numerical solution, and (17), respectively.

and gives the suboptimal solution otherwise. Second, as will

be shown in simulations, the above suboptimal solution given

by (17) is in fact very close to the optimal one found numer-

ically. Third, compared to the numerical solution, the subop-

timal solution given by (17) can be obtained with negligible

complexity since the parameters ǫ̃ and λ̃ can be obtained by a

simple bisectional search.

The closed-from suboptimal solution for the situation S2

can be obtained similarly and is neglected here.

5. SIMULATIONS

In this simulation, we compare the rates of the legitimate

communication under jamming when the jammer’s strategy

Qz is given by (i) the expression in (11), (ii) the optimal solu-

tion obtained numerically, and (iii) the approximation in (17),

respectively.

The specific setup of this simulation is as follows. The

number of antennas at the legitimate transmitter and receiver

are set to be 4 and 3, respectively, while the number of an-

tennas at the jammer is 5. The power limit for the legiti-

mate transmitter is 3 and the power allocation at the legiti-

mate transmitter is based on waterfilling. The noise variance

σ2 is set to be 1. The elements of the target signal s and the

channels Hr and Hz are generated from complex Gaussian

distribution with zero mean and unit variance. As a result

HrQsH
H
r is always PD, which leads to situation S1. We use

800 channel realizations and calculate the average RJ versus

the power limit of the jammer Pz.

Fig. 1 shows the average RJ with Qz obtained using the

three aforementioned methods. Three observations can be

made from this figure. First, there is a gap between the av-

erage RJ with Qz given by (11) and the average RJ with the
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Fig. 2. Percentage that Qz given by (11) is PSD versus Pz.

optimal Qz found numerically when Pz is small. The gap ex-

ists because Qz given by (11) is not always PSD and when

it is not PSD, it no longer gives the optimal solution of the

problem. Second, the gap between the average RJ with Qz

obtained numerically and the average RJ given by the subop-

timal Qz in (17) is very small. It verifies that the proposed

suboptimal solution is in fact very close to the optimal so-

lution of the considered problem. Third, the three curves of

average RJ converge when Pz increases.

Fig. 2 shows the percentage that Qz given by (11) is PSD

in all 800 channel realizations. It verifies the aforementioned

fact that Qz given by (11) can be indefinite when the jam-

mer’s power limit Pz is small. Even when Pz is larger (above

2), there remains a 20% chance that Qz given by (11) is in-

definite. It verifies the other fact that whether Qz given by

(11) is PSD also depends on the jamming channel.

Using the observations from the two figures, it can be seen

that the suboptimal solution given by (17) is a very good ap-

proximation of the optimal jamming strategy since it is very

close to the optimal one when Qz given by (11) is indefinite

while it becomes optimal when Qz given by (11) is PSD.

6. CONCLUSION

The general solution to the problem of jamming on a MIMO

Gaussian channel with Gaussian input is found under the PSD

condition. The effect of jamming power and jamming chan-

nel on the optimal jamming strategy is analyzed. For the case

that the PSD condition is not satisfied, a suboptimal solution

in closed-form is obtained as an approximation of the optimal

solution. Simulation results demonstrate the optimal solution

and the suboptimal solution versus the power limit of the jam-

mer and show that the proposed suboptimal solution is very

close to the optimal one.
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