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ABSTRACT

In this paper, we consider the problem of optimizing the transmit co-

variance matrix for a multiple-input multiple-output (MIMO) Gaus-

sian wiretap channel. The scenario of interest consists of a transmit-

ter, a legitimate receiver, and multiple non-cooperating eavesdrop-

pers that are all equipped with multiple antennas. Specifically, we

design the transmit covariance matrix by maximizing the secrecy

rate under a total power constraint, which is a non-convex differ-

ence of convex functions (DC) programming problem. We develop

an algorithm, termed alternating matrix POTDC algorithm, based

on alternating optimization of the eigenvalues and the eigenvectors

of the transmit covariance matrix. The proposed alternating matrix

POTDC method provides insights into the non-convex nature of the

problem and is very general, i.e., additional constraints on the co-

variance matrix can easily be incorporated. The secrecy rate perfor-

mance of the proposed algorithm is demonstrated by simulations.

Index Terms— Secrecy rate maximization, MIMO wiretap

channel, alternating optimization, difference of convex functions.

1. INTRODUCTION

Wireless physical layer security, where the physical characteristics

of the wireless channel are exploited to enhance the security of com-

munication systems, has recently attracted considerable attention.

This information theoretic concept aims at providing a legitimate

receiver with confidential information while preventing eavesdrop-

pers from overhearing the communication channel. The first model

to capture the physical layer security problem, termed the wiretap

channel, was introduced in [1]. Therein, the secrecy rate was in-

troduced as a performance metric to reflect the amount of reliably

transmitted information to a receiver, provided that no information is

leaked to illegitimate parties. Strictly positive secrecy rates usually

require the legitimate receivers’ channel statistics to be better than

those of the eavesdroppers. To mitigate the dependence on the chan-

nel conditions, multiple-input multiple-output (MIMO) techniques

[2]-[5] have been of recent focus to enhance the secrecy rate through

the additional degrees of freedom provided by multiple antennas.

The maximization of the secrecy rate by designing the transmit

covariance matrix under a total power constraint is an intricate task.

This is due to the non-convex nature of the optimization problem,

which is a difference of convex functions (DC) programming prob-

lem. Thus, in the case of both single and multiple eavesdroppers,

there is so far no efficient and tractable solution for general chan-

nel configurations. Closed-form solutions for the single eavesdrop-

per case have been derived for the special cases of a single antenna

receiver/eavesdropper [6], a positive semidefinite power-covariance

constraint [7], and channel matrices with certain rank properties [8].

However, for single and multiple eavesdropper scenarios in the gen-

eralized case, suboptimal designs have been proposed in [9]-[14].

For the single eavesdropper case, a fixed-point iterative design

based on the Karush-Kuhn-Tucker (KKT) optimality conditions was

presented in [9]. In [10], a beamforming method based on the gener-

alized singular value decomposition (GSVD) was proposed. More-

over, a zero-forcing strategy and a method relying on the maximiza-

tion of the signal-to-leakage-plus-noise ratio (SLNR) were derived

in [11]. The authors of [12] proposed an alternating optimization

approach under per-antenna power constraints. Therein, the original

problem is decomposed into two separable convex problems that are

solved in an alternating manner. Recently, a new method that op-

timizes the eigenvalues and eigenvectors of the transmit covariance

matrix separately in an alternating fashion was presented in [14].

It relies on the polynomial time DC (POTDC) method [15], which

was originally designed for the DC programming problem of opti-

mizing the amplification matrix for a two-way amplify-and-forward

relay network. In [16], the POTDC algorithm was applied to robust

adaptive beamforming for general-rank signal models and proven

to achieve global optimality under the condition that the presumed

norm of the covariance matrix mismatch is sufficiently small.

In the case of multiple eavesdroppers, however, only the method

in [13] has recently been proposed as an extension of [12]. As a

drawback of the scheme in [13], no insights into the non-convex

problem structure are revealed and a new derivation of the algo-

rithm procedure is required when incorporating new constraints on

the transmit covariance matrix [13]. Here, we take a more general

approach and extend [14] to the multiple eavesdropper case, which

is not straightforward due to the arising maxmin-type DC program-

ming problem.

In this paper, we develop the alternating matrix POTDC algo-

rithm to optimize the transmit covariance matrix that maximizes

the secrecy rate of a MIMO Gaussian wiretap channel with multi-

ple non-cooperating eavesdroppers. We assume that perfect channel

state information (CSI) is available at the transmitter. The proposed

algorithm is based on a reformulation of the original non-convex

problem, which enables an alternating optimization of the eigenval-

ues and eigenvectors of the transmit covariance matrix under a total

power constraint. However, the presented method can easily be gen-

eralized by incorporating additional constraints on the covariance

matrix, such as per-antenna power constraints, without the need to

redesign the algorithm. Furthermore, it provides insights into the

non-convex nature of the problem. The secrecy rate performance of

the proposed alternating matrix POTDC algorithm is demonstrated

by simulations.
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Fig. 1. MIMO Gaussian wiretap channel with K eavesdroppers.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the MIMO Gaussian wiretap channel scenario depicted in

Fig. 1, where a transmitter (Alice) with Na antennas sends informa-

tion to a legitimate receiver (Bob) with Nb antennas in the pres-

ence of K eavesdroppers (Eves) each with Nek antennas, where

k = 1, . . . ,K. The received signals at Bob and the Eves are re-

spectively given by

yb = H
H
x+ nb ∈ C

Nb×1
(1a)

yek = G
H
k x+ nek ∈ C

Nek
×1

, k = 1, . . . ,K, (1b)

where H ∈ C
Na×Nb and Gk ∈ C

Na×Nek represent the respective

MIMO flat-fading channels from Alice to Bob and from Alice to the

k-th Eve, x ∈ C
Na×1 with x ∼ CN (0Na

,P ) contains the transmit

symbols intended for Bob, and nb ∈ C
Nb×1 ∼ CN (0Nb

, INb
)

and nek ∈ C
Nek

×1 ∼ CN (0Nek
, INek

) are the additive white

Gaussian noise vectors at Bob and the k-th Eve. Furthermore, the

total power constraint Tr{P } ≤ P with P > 0 is employed at

Alice.

Based on the assumption that perfect channel state information

(CSI) is available at the transmitter, we can maximize the achiev-

able secrecy rate by designing the transmit covariance matrix P
∆
=

E{xxH}. The secrecy rate for the transmission from Alice to Bob,

where the k-th Eve is taken into account has been shown to be [2]

Rsk (P ) = ln |INb
+H

H
PH| − ln |INek

+G
H
k PGk|,

which is the difference between the mutual information of the Alice-

to-Bob and the Alice-to-k-th-Eve channels. Note that Rsk > 0 if

HHH � GkG
H
k holds [9]. The secrecy rate maximization prob-

lem can be formulated as

R
⋆
s = max

P

min
k=1,...,K

Rsk (P ) (2a)

s.t. Tr{P } ≤ P, P � 0Na
, (2b)

where the goal is to maximize the worst secrecy rate among the Eves.

The objective function in (2a) contains a difference of concave

functions. Thus, problem (2) belongs to the class of DC program-

ming problems, which are generally nonconvex. The authors of [12],

[13] have recently proposed an alternating optimization approach,

in which by introducing a new optimization variable the original

problem is decomposed into two separable convex problems that

are solved in an alternating manner. Moreover, a proof of the con-

vergence to a KKT point is given. We, however, propose a more

general approach that provides further insights and reveals the non-

convexity type of the underlying problem. It is an extension of the

method in [14] to the case of multiple Eves and termed alternating

matrix POTDC algorithm.

3. PROPOSED ALTERNATING MATRIX POTDC

ALGORITHM FOR SECRECY RATE MAXIMIZATION

In this section, we present the alternating matrix POTDC approach

to address the MIMO secrecy problem above. We start our develop-

ment by introducing the auxiliary variable τ [17] to rewrite (2) into

its epigraph form

max
P ,τ

τ (3a)

s.t. Rsk (P ) ≥ τ, k = 1, . . . ,K (3b)

Tr{P } ≤ P, P � 0Na
. (3c)

The eigendecomposition of P is given by P = UΛUH , where the

columns of the unitary matrix U ∈ C
Na×Na represent the eigenvec-

tors and the diagonal matrix Λ ∈ R
Na×Na contains the non-negative

eigenvalues λi, i = 1, . . . , Na, of P on its diagonal. Thus, problem

(3) turns into

max
U,Λ,τ

τ (4a)

s.t. ln |INb
+H

H
UΛU

H
H| (4b)

− ln |INek
+G

H
k UΛU

H
Gk| ≥ τ, ∀k

U
H
U = INa

, Tr{Λ} ≤ P, λi ≥ 0, ∀i. (4c)

Next, we apply Sylvester’s determinant theorem, which states that

the equality [18]

|IM +AB| = |IN +BA| (5)

holds for arbitrary matrices A ∈ C
M×N and B ∈ C

N×M . Conse-

quently, we obtain an equivalent formulation of (4) as

max
U,Λ,τ

τ (6a)

s.t. ln |INb
+H

H
UΛU

H
H| (6b)

− ln |INa
+Dk(U)Λ| ≥ τ, ∀k

U
H
U = INa

, Tr{Λ} ≤ P, λi ≥ 0, ∀i, (6c)

where we have defined Dk(U)
∆
= UHGkG

H
k U for notational con-

venience. While problem (6) is still a nonconvex DC programming

problem in both U and Λ, it is separable in these variables and can

be addressed by fixing either U or Λ and optimizing for the other

variable. This gives rise to an alternating optimization of (6), where

we first optimize with respect to Λ for a fixed value of U adopting

an extended version of the POTDC algorithm [15]. Then, in the sec-

ond step, we fix the obtained value of Λ and further optimize with

respect to U . Note that the latter is the optimization under the uni-

tary matrix constraint, which is a well-studied class of optimization

problems [20], [21].

In more details, we alternatingly solve the following two opti-

mization problems to obtain Λ
(n) and U (n) at the n-th iteration,

n = 1, 2, . . ., until convergence:

Λ
(n) = argmax

Λ,τ
τ (7)

s.t. ln
∣

∣INb
+H

H
U

(n−1)
ΛU

(n−1)H
H

∣

∣

− ln
∣

∣INa
+Dk(U

(n−1))Λ
∣

∣ ≥ τ, ∀k

Tr{Λ} ≤ P, λi ≥ 0, ∀i,
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U
(n) = argmax

U

min
k=1,...,K

ln
|INb

+HHUΛ
(n)UHH|

|INek
+GH

k UΛ(n)UHGk|
(8)

s.t. U
H
U = INa

.

In the first step, we address problem (7) via the POTDC algo-

rithm [15], which is designed for DC problems with functions of a

single scalar optimization variable in the non-concave term. How-

ever, the non-concave term in the objective function of (7) contains

the optimization with respect to the matrix Λ. Thus, we first mod-

ify (7) in order for the POTDC algorithm to be applicable. To this

end, we utilize Hadamard’s inequality, which states that the determi-

nant of a matrix A � 0M is less than or equal to the product of its

diagonal entries [22], i.e.,

|A| ≤
M
∏

m=1

aii. (9)

Applying inequality (9) to (7), we obtain

max
Λ,τ

τ (10a)

s.t. ln
∣

∣INb
+H

H
UΛUH

∣

∣ (10b)

−
Na
∑

i=1

ln(1 + [Dk(U)]iiλi) ≥ τ, ∀k

Tr{Λ} ≤ P, λi ≥ 0, ∀i, (10c)

where in (10b), we maximize the lower bounds on the actual se-

crecy rates of the K Eves in problem (7). All the terms in (10)

are concave or linear in Λ, except for the Eve-induced terms

− ln(1 + [Dk(U)]iiλi), i = 1, . . . , Na, which are convex and

each of which now depends only on a single variable. Hence, we

apply the POTDC algorithm [15] and iteratively handle these convex

constraints in terms of their linear approximation around suitably

selected points. The linear approximation of the convex part of (10b)

around the point λi,c ∈ [0, P ] such that
∑Na

i=1 λi,c = P is given by

ln(1 + [Dk(U)]iiλi) ≈ ln(1 + [Dk(U)]iiλi,c) (11)

+
(λi − λi,c)[Dk(U)]ii
1 + [Dk(U)]iiλi,c

.

In order to solve (10), we use (11) and perform iterations using

interior-point methods [19] over the following problem:

max
Λ,τ

τ (12a)

s.t. ln
∣

∣INb
+H

H
UΛUH

∣

∣ (12b)

−
Na
∑

i=1

(λi − λi,c)[Dk(U)]ii
1 + [Dk(U)]iiλi,c

≥ τ, ∀k

Tr{Λ} ≤ P, λi ≥ 0, ∀i. (12c)

In (12b), we have omitted the first term of the approximation (11),

which is a constant if
∑Na

i=1 λi,c = P holds with λi,c ∈ [0, P ]. Note

that for the initial values λi,c in the first iteration, we choose the max-

imum available power such that the power constraint Tr{Λc} ≤ P

holds with equality. The presented POTDC algorithm guarantees

the convergence to a KKT point of the problem (10). Furthermore,

the POTDC iterations ensure a non-decreasing sequence of the con-

straint values over the iterations [15].

In the second step, we address problem (8), which is the op-

timization over the complex-valued matrix U under the constraint

that U is a unitary matrix. To solve this problem, we consider the

Riemannian conjugate gradient algorithm on the Lie group of unitary

matrices proposed in [21] that is shown to move towards the optimal

point along the locally shortest paths over several iterations. This al-

gorithm presumes a differentiable objective function for the required

calculation of its gradient with respect to U . However, the cost func-

tion of (8) is a piecewise function and thus non-differentiable. Nev-

ertheless, the objective function to be maximized in (8) is the mini-

mum of a set of logarithms. It can then be shown that the minimum

of the logarithmic functions in (2) also provides the steepest descent

in the set of gradients of the objective function. Mathematically ex-

pressed, we have

min
k=1,...,K

Rsk (U) ⇐⇒ min
k=1,...,K

∇U (Rsk (U)), (13)

where ∇U (·) denotes the gradient of Rsk (U) for the k-th Eve with

respect to U , which can be derived as [23]

∇U (Rsk (U)) = ∇U ln
|INb

+HHUΛ
(n)UHH|

|INek
+GH

k UΛ(n)UHGk|
(14)

= Λ
(n)

U
H
H(INb

+H
H
UΛ

(n)
U

H
H)−1

H
H

(15)

−Λ
(n)

U
H
Gk(INek

+G
H
k UΛ

(n)
U

H
Gk)

−1
G

H
k .

Therefore, combining (13) and (15), the Riemannian conjugate gra-

dient algorithm [21] is still applicable to solve problem (8). It should

be noted that the accuracy of the solution obtained by this algorithm

for a given scenario depends on the adjustment of several perfor-

mance related parameters such as the chosen line search method and

preconditioning.

We summarize the above-developed alternating matrix POTDC

optimization procedure for solving the MIMO secrecy maximization

problem with multiple eavesdroppers (2) in Algorithm 1. Both op-

timization steps in Algorithm 1 result in non-decreasing objective

values. A more detailed convergence and optimality analysis is the

concern of future work.

It should be mentioned that in some applications per-antenna

power constraints need to be incorporated into the secrecy maxi-

mization problem [12]. This is due to the fact that each antenna may

have its own power amplifier, which should only operate in the lin-

ear range. Such set of constraints can be written as [P ]ii ≤ Pi, i =

Algorithm 1: The alternating matrix POTDC algorithm for

solving the secrecy maximization problem (2)

1: Initialize n = 1, ǫ1 > 0, ǫ2 > 0,

P (0) = U (0)
Λ

(0)
c U (0)H � 0Na

such that Tr{P (0)} = P ;

2: while |R(n)
s −R

(n−1)
s | > ǫ1 do

3: Set l = 1;

4: while |τ (n,l) − τ (n,l−1)| > ǫ2 do

5: Solve (12) to obtain Λ
(n,l);

6: Λ
(n,l)
c = Λ

(n,l);

7: l = l + 1;

8: end while

9: Λ
(n) = Λ

(n,l);

10: Solve (8) to obtain U (n);

11: n = n+ 1;

12: end while

13: Output: P (n) = U (n)
Λ

(n)U (n)H .
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1, . . . , Na, where Pi > 0 is the per-antenna power limit. In this re-

spect, the advantage of the proposed method is that these constraints

can be straightforwardly included into (7) and (12) without affecting

the alternating optimization procedure in contrast to the algorithms

proposed in [12] and [13], which essentially have to be rederived

after adding the per-antenna power constraints.

4. SIMULATION RESULTS

In this section, we provide simulation results that demonstrate the

performance of the presented alternating matrix POTDC algorithm

“AM-POTDC” to solve the MIMO secrecy rate maximization prob-

lem with multiple eavesdroppers. For comparison purposes, we in-

clude the two recently proposed methods “AO-CVX” and “AO-PG”

from [13] into our evaluation. Moreover, we also consider the con-

ventional waterfilling algorithm based on the singular value decom-

position (SVD) that only allocates power across Bob’s channel irre-

spectively of the eavesdroppers. In our simulations, the channels H

and Gk, k = 1, . . . ,K, are randomly generated and drawn from an

i.i.d. complex Gaussian distribution with zero mean and unit vari-

ance. The results are obtained by averaging over 1000 independent

Monte Carlo trials. For the proposed algorithm, the initialization

point P (0) is chosen randomly according to line 1 of Algorithm 1

and the thresholds ǫ1 and ǫ2 are both set to 10−5. Furthermore, we

plot the worst secrecy rate achieved among all Eves.

In the first scenario, we have K = 3 eavesdroppers and the

number of antennas at Alice, Bob, and the Eves are Na = 6, Nb =
6, and Ne1 = . . . = NeK = 2, respectively. Fig. 2 shows the

secrecy rate of the various methods as a function of the transmit

power P . Generally, the achieved secrecy rate increases with the

transmit power. It can be seen that the performances of the proposed

alternating optimization approach and the “AO-CVX” method are

identical over the whole range of powers, while the “AO-PG” scheme

performs slightly worse. Moreover, all three schemes significantly

outperform the waterfilling algorithm.

In the second scenario, we vary the number of Eves for an an-

tenna configuration of Na = 6, Nb = 6, and Ne1 = . . . =
NeK = 2. The maximum transmit power is fixed at P = 3 dB.

In Fig. 3, we illustrate the secrecy rates as a function of the num-

ber of Eves K. As expected, the secrecy rates decrease as K in-

creases. It is apparent that the proposed method and the “AO-CVX”

approach again achieve the same secrecy rate over the range of K.

They still provide a secrecy rate of 6.2 bits/channel use even with

K = 6 Eves. Once more, the performance of the “AO-PG” scheme

is slightly worse, whereas the waterfilling method that ignores the

eavesdroppers yields the worst secrecy rate.

5. CONCLUSION

In this paper, we have considered the non-convex secrecy rate max-

imization problem for a MIMO wiretap channel with multiple non-

cooperating eavesdroppers. All the involved terminals are equipped

with multiple antennas and perfect channel state information is as-

sumed at the transmitter. We have developed the alternating ma-

trix POTDC algorithm, which is based on alternating optimization

of the eigenvalues and the eigenvectors of the transmit covariance

matrix under a total power constraint. The proposed method pro-

vides insights into the optimization process and reveals the non-

convex nature of the underlying problem. As another advantage,

it is a general approach in the sense that additional constraints on the

covariance matrix, such as per-antenna power constraints, can easily

be incorporated into the optimization procedure. Simulation results
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have demonstrated the performance of the proposed alternating ma-

trix POTDC algorithm.
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