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ABSTRACT

Estimating the number of linearly independent signals impinging on
a collection of receivers is of increasing recent interest, particularly
in connection with MIMO systems for communications and sens-
ing. This paper derives maximum a posteriori estimators for sig-
nal rank from noisy data collected at multiple receivers. Situations
in which noise variance is known and unknown are both treated.
These estimators are shown to significantly outperform maximum-
likelihood/BIC rank estimators.

Index Terms— Bayesian detection, MAP estimation, rank esti-
mation, multi-channel sensing, MIMO communications.

1. INTRODUCTION

With the rise of transmit-diverse techniques in communications and
sensing, rank is becoming an increasingly important descriptive pa-
rameter in detection and characterization of received signals. In [1],
an algorithm is presented for estimating the number of signal sources
from data received at multiple sensors with motivation drawn from
cognitive radio applications. Cognitive radio is also the motivat-
ing application in [2, 3], where the focus is on detecting a signal of
known rank in multiple receiver channels. The application context
in [4, 5, 6] is less specific, accommodating multi-channel detection
of signals having known rank in, for example, surveillance scenarios
as well as communications.

It is important to note that most recent work on rank estima-
tion uses one of two alternative signal models. The model used in
[1, 2, 3, 5] takes the received signal to be gaussian with a rank-K
covariance matrix, so that the problem becomes one of testing to
discriminate between different covariance structures. In this paper,
and in [6, 7], the signal is assumed to occupy a fixed but unknown
K-dimensional subspace. Although the second model can be ap-
plied to spectrum sensing in communications as an alternative to the
first, it is necessary when addressing problems such as, for example,
detection and parameter estimation of multi-element (MIMO) radar
transmitters in electronic support and target detection using multi-
static passive radar. Work presented in [7] uses this model when ex-
amining detection of radar emissions having specific rank, where it
introduces a rank estimator for the purpose of characterizing MIMO
radar transmitters by the rank of their emissions. This model is also
used in [8], where Bayesian detectors based on comparison of sig-
nal rank were developed for use in multi-source, multistatic passive
radar.

The primary objective of this paper is to derive the posterior dis-
tribution for signal rank based on minimally informative priors for
the other signal parameters. Based on this posterior distribution a

maximum a posteriori (MAP) rank estimator is obtained. As men-
tioned above, the results presented here are anticipated to be relevant
for both communications and sensing applications.

The remainder of the paper is organized as follows. Section
2 presents a precise mathematical description of the signal and
measurement models. In this context, it sets forth the rank estima-
tion problem addressed in the following sections. Section 3 gives
maximum-likelihood (ML) solutions for this problem for the cases
in which the noise variance is known and unknown, respectively.
The need to regularize this estimator by, for example, the Bayesian
Information Criterion (BIC) is also discussed. Section 4, which is
the heart of this contribution, derives the posterior distribution of
signal rank under minimally informative priors. This distribution
supports MAP estimation of rank. Numerical results are summarized
in Section 5, followed by concluding remarks in Section 6.

2. MODEL AND PROBLEM FORMULATION

The rank estimation problem introduced above is formulated pre-
cisely as follows. A signal of unknown rank K ≥ 1 is received at
a set of M > K spatially distributed sensors. The sensor channels
are suitably sampled (and possibly time aligned and Doppler com-
pensated, depending on the specific scenario) to obtain M complex
data vectors, each of length N . These are organized into a M × N
data matrix X , each element xmn of which represents a sample of
the noisy signal collected at the mth sensor channel at time n.

The model of the data X from which K is to be estimated is

X = AS + ν. (1)

The K-dimensional signal subspace is defined by the matrix S ∈
CK×N , whose rows are orthonormal vectors in CN . A is a complex
M ×K matrix whose elements amk are the complex amplitudes of
the components of the signal vector from sensor m. Beyond these
properties, A and S are unknown. The noise matrix ν is normally
distributed with zero mean, and it is both spatially and temporally
white; i.e., itsMN×MN covariance matrix is σ2IMN where IMN

is the MN ×MN identity matrix.
Without constraints on either A or S, the model parameteriza-

tion just described is redundant. To see this, let U be any K × K
unitary matrix. Then defining parameters A′ = AU and S′ = US
yields an equivalent problem to the one defined by the original pa-
rameters A and S. A non-redundant parameterization is obtained
by defining parameters A ∈ CM×K and P = S†S where † de-
notes hermitian transpose. The matrix P is an N × N , rank-K
orthogonal projection matrix; i.e., it satisfies P = P †, P 2 = P and
Tr(P ) = K. It is possible to associate a unique choice of S with

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 Crown 5717



each P . The collection of all rank-K orthogonal projection matri-
ces constitute the Grassmannian GK,N , which is a smooth complex
manifold of complex dimension K(N −K) [9, 10].

This paper develops a MAP estimator of rank based on the
derivation of a posterior distribution for the rank of the signal K.
The multi-hypothesis problem considered is as follows:

H0 : X = ν

HK : X = AKSK + ν, for K = 1, · · · ,M − 1.

Under H0, the joint probability density function (pdf) of X condi-
tioned on σ2 is

p(X|H0, σ
2) = (πσ2)−MNe

− N
σ2

Tr(W ) (2)

where W = X†X/N . Under HK with K > 0, the joint pdf of X
conditioned on AK , SK and σ2 is

p(X|HK , AK , SK , σ2) (3)

= (πσ2)−MNe
− N
σ2

Tr(W )
e
− 1
σ2

Tr((AKA
†
K
−AKSKX†−XS

†
K
A
†
K

)
.

In what follows, the notation p(X|K) to represent p(X|HK) and
p(X|K = 0) for p(X|H0) will be used.

3. RANK ESTIMATION BASED ON THE BAYESIAN
INFORMATION CRITERION

First consider the situation in which the noise variance σ2 is known.
The maximum likelihood estimate of K is given in [6] as

K̂ = arg min
K∈{0,··· ,M−1}

min
AK ,SK

− log p(X|HK)

= arg min
K∈{0,··· ,M−1}

NTr(W )

σ2

(
1−

K∑
j=1

λj
/

Tr(W )

)
,

(4)

where λ1 ≥ λ2 ≥ · · · ≥ λN are eigenvalues of W . Note that
the non-zero eigenvalues of W are exactly the eigenvalues of the
sample-covariance matrix R̂ = XX†/N . An unfortunate conse-
quence of this observation is that, as the hypothesized rank K is
increased, the hypotheses HK become increasingly likely and the
ML estimate of K defaults to K = M − 1 irrespective of the data.
It is shown below that the Bayesian detector is much better behaved
in this regard.

Sensible estimates can be recovered by introducing a penalty
function based on one of the so-called information criteria [11, 12].
With this approach, the estimate (4) is replaced by

K̂ = arg min
K∈{0,··· ,M−1}

min
AK ,SK

− log p(X|HK) + L(ν(K), N),

where L(ν(K), N) is a penalty function that depends on the number
of parameters ν(K) and the number of samples N . The penalty
function for the Bayesian information criterion (BIC) is

L(ν(K), N) =
ν(K)

2
logN,

where ν(K) denotes the number of undetermined parameters in the
likelihood function. In the model (1), AK consists of 2MK real
parameters, the Grassmannian GK,N presents 2K(N −K) real pa-
rameters and there is one real parameter for the noise variance σ2 if

it is unknown. Therefore, the total number of undetermined param-
eters is 2MK + 2K(N − K) + 1 in the unknown noise case and
2MK + 2K(N −K) if the noise variance is known. Thus,

K̂ = arg min
K∈{0,··· ,M−1}

NTr(W )

σ2

(
1−

K∑
j=1

λj
/

Tr(W )

)
+ (K(M +N)−K2) logN.

(5)

If the noise variance is unknown, the BIC estimate is given by

K̂ = arg min
K∈{0,··· ,M−1}

MN log

(
1−

K∑
j=1

λj
/

Tr(W )

)
+ (K(M +N)−K2 + 1/2) logN.

(6)

4. POSTERIOR DISTRIBUTION FOR RANK

In [6], both Bayesian and generalized likelihood ratio tests for un-
known signal of known rank K, using data collected at M spatially
distributed receivers, were derived. In this section, a posterior distri-
bution for the rank K given the data X is derived, thereby enabling
a MAP estimator for rank to be defined. The likelihood under HK
given X is given by (3). This likelihood function is invariant under
the transformations

X → µUXV, A→ µUA, S → SV, and σ → µσ (7)

where U and V are any unitary matrices of dimensions M ×M and
N × N , respectively, and µ > 0. The priors for the nuisance pa-
rameters A and P , and for σ2 when it is unknown, are taken to be
as non-informative as possible. As such, these priors need to be in-
variant under the transformations (7). The invariant non-informative
prior measure on the space of unknown parameters is

dA dσ−2dµ(P ),

where dµ(P ) is the normalized invariant measure on GK,N and dA
is Lebesgue measure in CMK . This prior is unfortunately not proper.
The approach taken here to address this issue is to introduce proper
priors that approach the invariant non-informative prior in an appro-
priate limiting sense. The prior is taken to have the form

p(K,A, σ2)dA dσ−2dµ(P )

= p(K|β2)p(A|K,σ2, β2)p(σ−2|τ)dA dσ−2dµ(P ).

The components of this prior are assigned as follows. The prior for
A is chosen to be

p(A|K,σ2, β2) = (πβ2σ2)−MKe
− 1
β2σ2

Tr(AA†)
,

which is invariant and proper, and becomes less informative as β2 →
∞. The prior for σ2, if it is unknown, is taken as the maximum
entropy prior [13], i.e.,

p(σ−2|τ) = τMe−τMσ−2

,

which becomes less informative as τ → 0. Finally,

p(K|β2) =
(1 + β2)MK∑M−1
K=0 (1 + β2)MK

.

The form of this prior forK ensures that, as the prior forA becomes
less informative, the posterior ratios for any two ranks K and K′,
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p(K|X)/p(K′|X) approach a finite non-zero limit as β2 → ∞.
Otherwise, as β2 → ∞ the hypothesis HK with the smallest value
of K would dominate irrespective of the data.

For known σ2, the marginalized likelihood forK=1, · · · ,M−
1 is given by

p(X|K,σ2, β2) =
p(X|K = 0, σ2)

(1 + β2)MK

∫
GK,N

e
Nα
σ2

Tr(WP )
dµ(P ) (8)

where p(X|K = 0, σ2) is as given in (2) and α = β2/(1+β2).
The integral in (8) can be approximated using Laplace approxima-
tion. Using the method described in [6] for integration over GK,N
with respect to the normalized invariant measure (prior for P ), (8)
becomes

p(X|K,σ2, β2) ≈ ηKp(X|K = 0, σ2)

(1 + β2)MK
exp

(
Nα

σ2

K∑
i=1

λi

)

×
K∏
i=1

N−K∏
j=1

(λi − λK+j +
σ2

α
)−1.

In this expression,

ηK =
1

vol(GK,N )

(
πσ2

Nα

)K(N−K)

and vol(GK,N ) denotes the volume of the Grassmannian GK,N ,

vol(GK,N ) =

∏N
n=N−K+1A2n−1∏K

n=1A2n−1

,

where An = 2πn/2/Γ(n/2) is the area of the unit sphere in Rn and
Γ denotes the Gamma function. The posterior distribution for K is
then

p(K|X,σ2, β2) =
p(K|β2)p(X|K,σ2, β2)∑M−1
K=0 p(K|β2)p(X|K,σ2, β2)

.

Taking the limit as β2 → ∞ yields the posterior distributions for
K = 1, · · · ,M − 1, assuming known σ2, as

p(K = 0|X,σ2) = C

and

p(K|X,σ2) =
C

vol(GK,N )

(
πσ2

N

)K(N−K)

e
N
σ2

∑K
i=1 λi

×
K∏
i=1

N−K∏
j=1

(λi − λK+j + σ2)−1.

The normalization constant C is defined so that

M−1∑
K=0

p(K|X,σ2) = 1.

When σ2 is unknown, the marginalized likelihoods are

p(X|K = 0) =
τMΓ(p)Tr(W̃ )−`

N `πMN

and

p(X|K,β2, τ) =
p(X|K = 0)

(1 + β2)MK

∫
GK,N

(
1− αTr(WP )

Tr(W̃ )

)−`
dµ(P ),

(9)
where ` = MN + 1 and W̃ = W + Mτ

N2 IN .
As in the case of known noise variance, the integral (9) can be

approximated as in [6] to obtain

p(X|K,β2, τ) ≈ ρKp(X|K = 0)γK(N−K)−p

(1 + β2)MK

×
K∏
i=1

N−K∏
j=1

(λ̃i − λ̃K+j +
Nγ

pα
)−1

where γ = (1− α
∑K
i=1 λ̃i) with λ̃i = λi/Tr(W̃ ), and

ρK =
1

vol(GK,N )

(
π

pα

)K(N−K)

.

In the limit β2→∞ and τ→0, the posteriors with unknown σ2 are

p(K = 0|X) = C

and

p(K|X) = C
1

vol(GK,N )

(
π

p

)K(N−K)

γK(N−K)−p

×
K∏
i=1

N−K∏
j=1

(λ̃i − λ̃K+j +
Nγ

p
)−1

for K = 1, · · · ,M − 1, where in the limit,

λ̃i = λi/Tr(W ), γ = 1−
K∑
i=1

λ̃i.

The MAP estimate of K is

K̂ = arg max
K

p(K|X), (10)

for which it is unnecessary to compute the constant C.

5. NUMERICAL RESULTS

In this section, the performance of the MAP rank estimator derived
above is evaluated by simulation. Its performance is compared to
that obtained using an information criterion approach (BIC,) as dis-
cussed in Section 3. Specifically, the performance of the MAP es-
timator (10) is compared with those of the corresponding BIC for-
mulations (5) and (6). Simulations were carried out for M = 6
antennas, N = 128 samples, and with SNR defined as

SNR(dB) = 10 log10

σ2
a

σ2

where the elements of A were taken to be zero-mean IID gaussian
random variables with variance σ2

a. The simulations were performed
over 500, 000 realizations with the rank K randomly generated be-
tween 0 and M − 1; i.e., K ∈ {0, . . .¸ , 5} in each realization. Ta-
ble 1 gives resulting estimates of the probability Pr(K̂ = K|K)
of the estimated rank given the true rank using the MAP estimator
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Table 1. Pr(K̂|K) for the MAP estimator

K
K̂ 0 1 2 3 4 5

0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 0 1 0 0 0
3 0 0 0.0005 0.9995 0 0
4 0 0 0 0.0277 0.9723 0
5 0 0 0.0001 0.0232 0.4861 0.4906

Table 2. Pr(K̂|K) for the BIC estimator

K
K̂ 0 1 2 3 4 5

0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 0.0004 0.9996 0 0 0
3 0 0 0.0022 0.9978 0 0
4 0 0 0 0.0058 0.4461 0.5481
5 0 0 0 0 0.0021 0.9979

and assuming unknown noise variance. Table 2 gives corresponding
figures for the BIC estimator. The SNR in both tests is 10 dB. In
this “confusion matrix” format, the diagonal elements represent the
probability of correct estimation of the rank; i.e., Pr(K̂ = K|K).

Figure 1 shows the average probability of error for the MAP
and BIC estimators. The figure clearly demonstrates that, in this
scenario, the MAP estimator manifests substantial performance im-
provement over the BIC estimator in both the known and unknown
noise variance cases. In fact, the MAP rank estimator with unknown
noise variance is roughly comparable in performance to the BIC es-
timator that exploits known noise variance.

In this example, the BIC estimator for unknown noise variance
provides slightly better performance than both the Bayesian estima-
tor for unknown noise variance and the BIC estimator for known
noise variance when the SNR is between 4 and 10dB. This is because
the BIC estimator for unknown noise variance has a strong bias for
maximal rank (K = 5). This bias is also responsible for plateau in
performance at 0.1 probability of error as the SNR increases.

6. CONCLUSION

This paper has considered the problem of estimating signal rank
from multiple channels of noisy sensor data. This problem is rele-
vant in cognitive radio and is increasingly significant with the growth
of MIMO systems in both sensing and communications.

MAP estimators for signal rank were derived for situations in
which noise variance is known and unknown. These estimators were
shown via simulation to significantly outperform ML/BIC rank esti-
mators in a typical scenario.
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