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ABSTRACT

The solution of inverse problems where the parameter being esti-
mated has a known structure has been widely studied. In this work,
we consider the situation where it is not appropriate to assume a
structure for the parameter, but the observations on which the es-
timate are based are structured; specifically, when the observations
are parametrized by a decomposable graphical model. This trans-
lates to structured sparsity of the inverse covariance matrix for Gaus-
sian distributed observation vectors. We present an approximate
least squares method which takes advantage of the structure to re-
duce the complexity of least squares. The approximate least squares
method can be implemented recursively for even lower complexity.
It is shown that the proposed method is asymptotically equivalent
to least squares parameter estimation for a large number of observa-
tions. The properties of the algorithm are verified by simulation.

Index Terms— Least squares methods, graphical models, adap-
tive algorithms

1. INTRODUCTION

Linear inverse or parameter estimation problems are amongst the
most important challenges in signal processing. Detailed descrip-
tions of various problems that fall into this framework may be found
in, for instance, [1,2].

The basic linear parameter estimation problem is that of finding
a vector h from a number of observations of (n) and y(n), where

y(n) = h'e(n) +v(n), n=1,2,...,N. (1)

Note that ' represents the Hermitian operation, and v(n) is noise. '

In recent years, there has been much interest in taking advan-
tage of known properties of the system in order to either improve
the performance or reduce the computational complexity of the es-
timation algorithm. The case when the parameter h is sparse has
been the subject of special interest, both for the model of (1) and
generalizations [3-6]. In [7], the problem of linear inference for
multi-resolution models with a sparse inverse covariance structure is
considered. Sparse recovery with graphical model prior constraints
is considered in [8-10] and references therein. All of these methods
exploit constraints on the parameter that is being estimated.
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In (1), y(n) is assumed to be scalar and x(n) is a vector of the same
dimension as h, although it is easy to extend this to the case of vectors and
matrices of suitable dimension, respectively.
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In this work, a related but different problem is considered. We
consider the case in which h is not constrained, but the observations®
a(n) are structured. The assumption is that it is hard to explicitly
constrain the parameter that is being estimated, but the system has
structure, which manifests itself as structured observations.

An example of a motivating situation is the problem of estimat-
ing equalizer coefficients. In this case, the random vectors x(n)
correspond to outputs of a channel. Depending upon the channel,
therefore, they may be quite structured. However, based on this in-
formation, it may be hard to impose structure on the equalizer coef-
ficients. The proposed model thus generalizes the problem of con-
straining the parameter to exploiting constraints that are imposed in
a less obvious manner.

Specifically, the structure assumed is that each vector x(n) is
Gaussian distributed, and that the distribution factors according to
an undirected graphical model. For a Gaussian vector, this implies a
structured sparsity constraint on the inverse covariance matrix [11].
Since the inverse covariance matrix is central to (linear) estimation,
we are able to exploit such structured sparsity in developing the pro-
posed method.

A common method of solving problems of the form of (1) is
least squares, since it performs fairly well in practice. Moreover,
it is possible to cast least squares into a computationally efficient
recursive form, termed recursive least squares, which can be used
(with exponential windowing) to track h as it changes over time.
The reader is referred to [12] for a discussion of these and other
properties of Least Squares.

In this paper we present an algorithm that utilizes the structure
of the covariance matrix of the observations to form an approximate
least squares estimate that is significantly less computationally inten-
sive than traditional least squares and is also easy to parallelize. It
is easy to recast the algorithm as a recursive algorithm similar to the
RLS algorithm. It is shown that in the large data limit, as N — oo,
the approximate method converges to the least squares solution.

2. PRELIMINARIES

Before developing the algorithm, it is necessary to state a few as-
sumptions and results. Note that boldface lowercase represents vec-
tors and boldface uppercase denotes matrices; and a subscript for a
vector represents the component of the vector (e.g., h1 means the
first component of h).

’In the literature, (n) is sometimes referred to as the “input” to the sys-
tem and y(n) as the observation. However, from the point of view of the
estimation algorithm, they are both observations based on which the param-
eter is estimated. Thus, in this work, we interpret &(n) as observations.
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Structure of Jp

Example 1

Example 2

Fig. 1. Relationship between a graph G and the inverse covariance
matrix Jz. Entries of the J outside the dotted lines are 0. Dashed
circles around nodes of G represent maximal cliques, corresponding
to each of which a non-zero block is present in Jp.

First, with reference to (1), the length of h (and of x(n) for
each n) is M. We assume that the vectors &(n) are independent at
different times, and each vector has a multivariate complex normal
distribution with zero mean and a positive definite covariance matrix
R, ie., x(n) K eN (0, R.). We further denote J, = Ry as
the inverse covariance matrix of @(n). Finally, it is assumed that
v(n) is zero-mean white noise with covariance o and that it is un-
correlated with & (n).

The constraint that is introduced on the vectors @(n) is that the
probability density function of each @(n) factors according to a de-
composable undirected graphical model G of M nodes. In other
words, the joint distribution of the vector x(n) can be written as
the product of potentials over the cliques of the graph G (divided
by a suitable normalization factor). When this happens, we say that
the vectors @(n) are parameterized by the graph G. The underly-
ing graph G is decomposable if (and only if) it is chordal. These
concepts are discussed in detail in [13, 14].

For multivariate Gaussian vectors which are parameterized by a
graph, the inverse covariance matrix of the vectors have entries of 0
wherever there is no edge between the corresponding nodes in the
graph [11], ie., Jz;; = 0 <= (i,5) € G (by convention, every
node is connected to itself, so that (¢,4) € G). This is demonstrated
in Figure 1. Thus, the graphical model constraint on the random
vectors is equivalent to a sparsity constraint on the inverse covariance
matrix. It is assumed that this sparsity pattern is known (though the
matrix itself is not known).

The objective of the problem is to estimate h based on N obser-
vations of x(n) and y(n). The baseline algorithm to estimate h is
the least squares algorithm. The least squares estimate based on N
observations, provided N > M, is given by [12]:

his(N) = Ry (N)ray(N) )

where:
Ra(N) = % Szt (n) (3a)
ray(N) = 1= > @)y (n) (3b)

With this background, we develop a low-complexity algorithm
that uses the graphical model, or equivalently, the sparsity of the
inverse covariance matrix, to form an approximate least squares es-
timate of h.

3. PROPOSED METHOD

Observe that, in the absence of other constraints on x(n), Re (V)
is the Maximum Likelihood estimate of R, from N samples of «.
Similarly, rzy (V) is the ML estimate of the cross correlation be-
tween x(n) and y(n). Moreover it is a simple matter to show that
RZ'(N) is the ML estimate of J,. Hence, the Least Squares al-
gorithm multiplies the ML estimate of the inverse covariance ma-
trix with the ML estimate of the cross-correlation between x(n) and
y(n).

In [15], the authors presented expressions for the ML estimate
for the inverse covariance matrix when the vector is parameterized
by a decomposable graphical model. The ML estimate can be com-
puted by combining local estimates at different cliques.

Specifically, a decomposable graph G can be broken into a set of
maximal cliques C and separators S°. For any ¢ € C, let . be the
vector of variables in that clique. Then define

Ro (N) =+ Y we(n)al(n) (4a)
Facy(N) = 1 3" @e(n)y’ () (4b)

and similar quantities for a separator. Then, the ML estimate of J
based on IV observations, subject to parameterization by the graph
G is denoted J, (IV), and given by [15]:

J=(N) =" [RaI ()], - Y [RaI (V)] ®)

ceC seS

where [-]o is an operator that takes the matrix in its argument and
places it at the appropriate location in a conformable matrix, padding
the rest of the resulting matrix with zeros. The location corresponds
to the position of the variables of that particular clique in the matrix.
For instance, if the clique has @1, 2 and «3, then the matrix in the
argument would be placed in the corresponding 3 X 3 sub-matrix.
Our algorithm essentially replaces the “unconstrained” ML es-
timate (3a) with the estimate of (5), which is the true ML estimate
with the graph parameterization constraint. Of course, it seems that
we should also represent 4, (/N) in a similar manner. However, it
is simple to verify by linearity for a decomposable graphical model,

Tay(N) =D [rec(N)]g = D [re. (V)] (©)

ceC seS

3While we can break any graph into sets of its cliques and separators, in
this work, it is required that the sets C and S satisfy the running intersection
property, which is true if, and only if, G is decomposable.
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SO Ty (V) is already in the right form.”*
Hence, the estimate using the structured version of Least
Squares is given by:

has(N) = Jo(N)ray(N) )

A few important things should be said about the proposed struc-
tured LS algorithm.

3.1. Combination of Local Estimates:

Using (5) in (7)

hys(N) = (Z [R2IN)], =D [R;3<N>JO) Tay(N)
ceC SES

= > (R (N)rey(N)], = Y [Ral (N)ra.y (N)]

ceC seS
®)

Thus, the structured LS method combines the least squares estimates
at each clique (and subtracts separators to avoid double counting).
This means it is parallelizable, and it can be implemented in a dis-
tributed fashion, if the application so demands.

3.2. Recursive Implementation:

The Least Squares estimate of (2) can be implemented in a recur-
sive form [12], called the Recursive Least Squares filter. This is a
highly efficient implementation when the data is received in an on-
line manner. The RLS update step from time (data point) N — 1 to
N is:

his(N) = his(N — 1)
+ Ry (N)a(N) [y(V) = bV = D2(V)] " ©)

Define e(N) = y(N) — hi (N — 1)@ (N) as the innovation at time
N. It can be shown using the matrix inversion lemma that the update
equation above can be run in O (M 2) time.

From (8), the structured LS algorithm is the combination of a
least squares algorithm for each clique. Hence, it seems clear that
each of these local LS algorithms can be run recursively using an
update equation similar to (9), with x(N) replaced with x.(NV),
and R, (N) replaced with R, (V). However, there is an impor-
tant change to note. As (8) indicates, the local estimates have to be
combined to form a global estimate of h, which is thereafter used to
filter the overall input &(n). In other words the filtering operation is
global. Therefore, the innovation term, which is computed using the
output of the filter, is computed globally. Hence, when implemented
recursively, the update equations for the structured RLS algorithm
are given by:

hgas,c(N) = hgas,c(N —1)
Ry (V)ze(N) [y(V) = BV = Da(N)]
(10

and

has(V) = 3 [hasc )] = 3 [husa(W)] - an

ceC seS

4However, see 4.2.2.

Thus, the structured Least Squares algorithm can be imple-
mented in a recursive form. Moreover, each clique can run its
own RLS algorithm, i.e., the recursive processing can be done in
parallel or distributed form, and only the innovation needs to be
computed globally and shared. These are valuable properties that
show how to parallelize the least squares algorithm effectively when
the observations are parameterized by a decomposable graph.

The advantage of a recursive form is that it can be used to track
time-varying systems, with an exponential weighting factor. This
leads to some interesting observations. For instance, the structured
RLS form can track the overall coefficient vector with different aver-
aging intervals for cliques whose coefficients vary at different rates.

4. PERFORMANCE CHARACTERIZATION

4.1. Computation Complexity

When the least squares algorithm is implemented in a non-recursive
form, the slowest step is the direct matrix inversion, which has a
complexity of O (M 2‘8) (faster algorithms are known, but are prac-
tical only for enormous matrices; see [16] and references therein).
Conventional least squares thus has a complexity of O (M 2‘8).

Defining |c| as the number of variables in clique ¢, the structured
least squares has a complexity of O (3 ,cclcl*® + Y csls*®).
since a matrix inversion is required for each clique and separator (as-
suming no parallelization). The number of cliques is obviously up-
per bounded by M. If we further assume that max.cc |¢c| < K (fora
decomposable graph, the largest separator has to be smaller than the
largest clique), then it follows that the complexity is O (K**M),
for a purely serial implementation using matrix inversion. The per-
formance could be improved by a factor of M with parallelization.

A similar argument shows that using the recursive implementa-
tion of 3.2, the complexity of the structured algorithm is O (K*M )
(at each time), as opposed to O (M 2) for conventional RLS.

This indicates the regime in which the algorithm is of the most
interest: when M > K, i.e., when the largest clique only contains
a small fraction of the variables. In this regime, the complexity is
essentially linear in M, as opposed to nearly cubic for conventional
least squares, since the higher order terms are not important.

4.2. Convergence Behavior and Estimation Error
4.2.1. Large N

First consider the case when N — oco. Practically, this corresponds
to the case where the N > M.

It was mentioned in [15] that as N — oo, J;(N) 2% Jp. In-
deed this follows from the fact that J,, (V) is the frue ML estimate of
Jz given the graph constraints, and the ML estimator is consistent.
Combined with the fact that 74, (N) =2 7, (due to the strong law
of large numbers), it is clear that hs1s(N) —25 Ry ray = Awse
almost surely as N — oo. Thus, the structured LS estimate con-
verges to the Minimum Mean Square Error (MMSE) estimate.

The conventional least squares estimate is also known to con-
verge to the MMSE estimate. Hence, the structured Least Squares
is asymptotically equivalent to the true least squares estimate. This
should not be a surprise, as both Rz' (V) and J (V) converge to
Jzas N — oco.

Finally note that iLMMSE — h as 0 — 0 (as the noise van-
ishes). Thus, the structured LS and conventional LS are both consis-
tent asymptotically for N — co and o — 0.
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4.2.2. Moderate N

When N > M, but N ~ M, using the results of [17], it is possible
to show that the conventional Least Squares estimate is consistent as
% = 0, ie., that ilLs(N ) 2% h.> However, for the structured LS
algorithm, it can be shown that:

Jo(N) &
=) S (e (n)
n=1
12)
The first term is noise independent, and in general, is non-zero for
finite IV, so the structured LS algorithm is not consistent for finite
N and as 0> — 0. This is one instance in which the performance
deteriorates over using conventional least squares.

It should be understood, however, that the loss of performance
is not due to a “compromise.” Indeed, as shown in [15], Jx(N)
is a better estimate of the true inverse covariance matrix than is
R_*(N), which is only to be expected since it explicitly accounts
for the structure. Rather, the reason for the degradation in perfor-
mance is that merely writing the cross correlation as a linear combi-
nation of the cross correlation term for cliques as in (6) is not suf-
ficient to exploit the graphical model structure when estimating the
cross correlation term. A more sophisticated approach is needed to
incorporate the structure into the cross-correlation term.

h—has(N) = (I - jw(N)Rw(N)) h+

4.2.3. Small N

Computing the Least Squares solution (without regularization) re-
quires that N > M so that the matrix R (V) is invertible almost
surely. The largest matrix whose inverse is needed by the structured
least squares algorithm, however, is max.cc|c|.

It has been noted in 4.1 that computationally, structured LS al-
gorithm has the most utility when the size of the largest clique is
much smaller than M. Assuming that this is regime of operation,
structured LS usually needs much less data to provide a numerically
stable estimate. Of course, as discussed in 4.2.2, the estimate so
obtained is not necessarily very good.

4.3. Verification by Simulation

To verify the results and properties described, the conventional and
structured LS algorithms were implemented to estimate an unknown
channel of length M = 10, based on a number of observations N
and at different noise levels (signal-to-noise ratios). The metric is
the mean squared error, which is the normalized squared-¢2 norm of
the estimation error. The input vectors x(n) have a graphical model
structure which is the same as the one shown in Example 2 of Figure
1 extended to 10 nodes (a Markov chain structure).

The results as a function of SNR for some values of N are shown
in Figure 2. These results demonstrate the concepts discussed in
4.2.2. The structured LS algorithm saturates to an error floor with
increasing SNR, where the performance of the conventional algo-
rithm continues to improve.

Figure 3 has the results as a function of N for SNR= 10dB.
These demonstrate that for large N, the errors of both conventional
and structured LS go to 0, i.e., both estimators are consistent, as dis-
cussed in 4.2.1. Moreover the small N effects discussed in 4.2.3 are
also shown in the figure; for N < 10, the MSE of the conventional
method blows up, but the structured LS does not.

SWe don’t need [17] to prove that if 02 =0, then iL]_s(N) = h, but that
fact alone does not guarantee “graceful” convergence.

MSE (dB)
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—10f - e -N = 20, Structured
—2—N=50, Conventional
—12H =2 -N=50, Structured
——N=100, Conventional

" - ¢ -N=100, Structured ‘
) -5 0 5 10
SNR

Fig. 2. Mean Square Error of Conventional and Structured LS as a
function of SNR for various N

—— Conventional LS ||
- e -Structured LS

=50 . 5 S 4

10 10 10 10
N

Fig. 3. Mean Square Error of Conventional and Structured LS as a
function of N, SNR= 10dB

5. CONCLUSIONS

In this work, an algorithm was introduced to solve the problem of
parameter estimation with structured observations. The observa-
tions were assumed to be parameterized by a decomposable graphi-
cal model, which led to a structured inverse covariance matrix. Ex-
ploiting the structure of this matrix, a Structured Least Squares algo-
rithm was developed. The useful properties of this algorithm were
shown to include lowered complexity, the ability to be parallelized
and distributed, the existence of a recursive structure and asymptotic
consistency. The known drawbacks and error floors were discussed.

Various questions still remain. It has been stated that the per-
formance degradation in certain regimes is due to the naiveté of the
method of exploiting structure in computing the cross correlation.
Exact methods for this could be developed. An analysis to better
understand the error floor (i.e., the performance degradation) would
be instructive. More research into the behavior of the algorithm in
tracking applications is needed.
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