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PARTIAL RÉNYI MUTUAL INFORMATION

Septimia Sarbu

Department of Signal Processing
Tampere University of Technology

PO Box 527 FI-33101 Tampere, Finland
septimia.sarbu@tut.fi

ABSTRACT

Shannon and Rényi information theory have been applied to
coupling estimation in complex systems using time series of
their dynamical states. By analysing how information is trans-
ferred between constituent parts of a complex system, it is
possible to infer the coupling parameters of the system. To
this end, we introduce the partial Rényi transfer entropy and
we give an alternative derivation of the partial Rényi mutual
information, using the conditional Rényi α-divergence. We
prove that, in the limit α → 1, this divergence tends to the
conditional Kullback-Leibler divergence from Shannon infor-
mation theory. As a result, when α→ 1, we obtain the partial
transfer entropy and the partial mutual information from their
Rényi equivalents. Using these Rényi information-theoretic
functionals, we identify the coupling direction and delay be-
tween two processes in an autoregressive system of order 1.

Index Terms— partial Rényi transfer entropy, partial
Rényi mutual information, information flow, coupling esti-
mation

1. INTRODUCTION

Coupling estimation using time series from complex systems
is an area of active research [1], [2], [3], [4]. In a complex sys-
tem of interconnected parts, one can measure the dynamical
states of each element of the system over time. But, there is
no information directly available about how the elements are
coupled in the system, what is the direction of the coupling,
what is the strength of the coupling and what is the time de-
lay of the coupling. Information theory is one approach to
infer these parameters from time series of the dynamics of
the system. Information theory analyses how information is
processed by a dynamical system and how it is transmitted
between systems. When two parts of a complex system are
connected, they exchange information in one, two or both di-
rections. Information-theoretic equations measure if the dy-
namical activities of parts of the complex system are statisti-
cally correlated. If they are, then there is a coupling between

these parts. One can also determine the direction of the infor-
mation flow, i.e. the direction of the coupling.

Two approaches from information theory have been used
to analyse dynamical systems: Shannon information theory
[5] and Rényi information theory [6]. In Shannon informa-
tion theory, the transfer entropy(TE) [7] from one process
Y to another process X measures how much shared infor-
mation there is between the present state of X and the past
states of Y , given that we know the history of the process
X . It is an asymmetric measure of information, which makes
it extremely useful in detecting directed exchange of infor-
mation. The partial transfer entropy(PTE) [8] improves on
TE, because it adds the environment as another conditioning
variable to the transfer entropy. Two elements of a complex
system, X and Y , might share information due to indirect
connections through other parts of the system, Z. In estimat-
ing the transfer from Y toX , adding the knowledge about the
processes Z to the knowledge of the history of X improves
the estimation accuracy. The concept of eliminating indirect
influences between two directly coupled processes X and Y
is used to define the partial mutual information(PMI) in [9].
In order to make PMI a directed measure of information, the
processes X and Y are time-delayed. In this case, the PMI
has a maximum at the real coupling delay and has value close
to zero at any other delays.

In Rényi information theory, the parameter α offers
more flexibility than Shannon information theory, as it
can be tuned according to the application. Moreover, the
Rényi information-theoretic functionals include their Shan-
non equivalents as a special case when α → 1. The authors
of [3] generalized TE to Rényi transfer entropy(RTE), by re-
placing the Shannon entropy in the definition of the TE with
the Rényi entropy. They used RTE to measure the amount of
information flow between the US, European and Asia-Pacific
region markets. The authors of [10] generalized PMI to the
conditional Rényi mutual information(CRMI).

In this paper, we extend the Rényi information theory to
the partial Rényi transfer entropy and the partial Rényi mutual
information. They are the generalization of PTE [8] and PMI
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[9], respectively. The paper is organized as follows: in section
2, we present the mathematical definitions and derivations of
the partial Rényi transfer entropy and the partial Rényi mutual
information, which are the core of this article. In section 3,
we apply these equations to an autoregressive system of order
1, to identify the direction of the information flow. In section
4, we summarize the main points of this study.

2. MATHEMATICAL DEFINITIONS AND
NOTATIONS

All the equations presented in this paper are derived for the
discrete case. Let X , Y , Z be three random vectors and let
x, y, z be a realization of these random vectors. Let p and
q be two probability mass functions, with n elements, such
that

∑n
i=1 pi = 1 and

∑n
i=1 qi = 1. Then, the Rényi α-

divergence is defined in [6] as

Dα(p ‖ q) =
1

α− 1
log

(
n∑
i=1

pαi
qα−1i

)
(1)

In order to define the conditional Rényi α-divergence, we
briefly review some facts about conditional random variables.

2.1. Conditional random variables

Let X and Y be two random variables(r.v.) and x and y one
realization of these r.v.s, x ∈ EX and y ∈ EY , where EX is the
ensemble ofX and EY is the ensemble of Y . Then, the condi-
tional r.v. (X|Y = y) has the probability mass function(pmf)
p(X|Y = y) = P((X|Y = y) = x) = P(X = x|Y = y),
for every value x ∈ EX .

Let p and q be two pmfs of the r.v. (X|Y = y). Then,
the Rényi α-divergence between p and q, Dα(p(X|Y = y) ‖
q(X|Y = y)), is a function of y. As such, it is an r.v., because
it is a function of the r.v. Y .

2.2. Rényi information-theoretic equations

In order to have a value for the divergence between two con-
ditional pmfs, we define the conditional Rényi α-divergence
as the expectation of Dα(p(X|Y = y) ‖ q(X|Y = y)) with
respect to the r.v. Y :

Definition 1.

D∗α(p(X|Y ) ‖ q(X|Y )) =

= EY [Dα(p(X|Y = y) ‖ q(X|Y = y))]

=
1

α− 1
·
∑
y

p(y) · log

(∑
x

pα(x|y)

qα−1(x|y)

)
(2)

This is an alternative definition to the one given in [10].

Theorem 1. With the above definitions and notations:

lim
α→1

D∗α(p(X|Y ) ‖ q(X|Y )) = D∗KL(p(X|Y ) ‖ q(X|Y )),

where D∗KL is the conditional Kullback-Leibler divergence
(the classical conditional divergence in Shannon information
theory),

D∗KL((p(X|Y ) ‖ q(X|Y )) =
∑
x

∑
y p(x, y)·log p(x|y)

q(x|y) .

Proof.

xα = elog x
α

= eα·log x

d

dα
[xα] =

d

dα

[
eα·log x

]
= xα · log x

Using L’Hôspital’s rule we have:

lim
α→1

D∗α(p(X|Y ) ‖ q(X|Y )) =

= lim
α→1

∑
y

p(y) · d

dα

[
log

(∑
x

pα(x|y)

qα−1(x|y)

)]

= lim
α→1

∑
y

p(y) · 1∑
x

pα(x|y)
qα−1(x|y)

∑
x

q(x|y)
d

dα

(
p(x|y)

q(x|y)

)α
= lim
α→1

∑
y

p(y) ·
∑
x

q(x|y) ·
(
p(x|y)

q(x|y)

)α
· log

p(x|y)

q(x|y)

=
∑
y

∑
x

p(y) · p(x|y) · log
p(x|y)

q(x|y)

=
∑
x

∑
y

p(x, y) · log
p(x|y)

q(x|y)
= D∗KL. (3)

Definition 2. Let X,Y be two r.v.s. The Rényi mutual infor-
mation is defined as the Rényi α-divergence between the joint
pmf p(x, y) and the product of the marginals, p(x) · p(y):

RMI(X,Y ) = Dα(p(x, y) ‖ p(x) · p(y))

=
1

α− 1
· log

(∑
x

∑
y

p(x, y)α

(p(x) · p(y))α−1

)
(4)

Definition 3. Let X,Y, Z be three r.v.s. We define the con-
ditional Rényi mutual information as the conditional Rényi
α-divergence between the conditional joint pmf p(x, y|z) and
the product of the conditional marginals, p(x|z) · p(y|z):

CRMI(X,Y |Z) = D∗α(p(x, y|z) ‖ p(x|z) · p(y|z))

=
1

α− 1
·
∑
z

p(z) · log

(∑
x

∑
y

p(x, y|z)α

(p(x|z) · p(y|z))α−1

)
(5)
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Definition 4. We extend the concept of partial Shannon mu-
tual information [9] to the Rényi information theory. We de-
fine the partial Rényi mutual information as a conditional
Rényi mutual information between the r.v.s X,Y, Z:

PRMI(X,Y |Z) = CRMI(X,Y |Z) =

=
1

α− 1
·
∑
z

p(z) · log

(∑
x

∑
y

pα(x, y|z)
(p(x|z) · p(y|z))α−1

)
(6)

The concept of Rényi transfer entropy was introduced in
[3]. Here, we use an alternative definition based on the con-
ditional Rényi mutual information.

Definition 5. LetX,Y be two random vectors,X = [Xn+1Xn

· · ·Xn−k+1], Y = [YnYn−1 · · ·Yn−l+1], where the current
time point is n + 1 and k, l are the time lags for X and Y
respectively. Then,

RTEY−>X(k, l) = CRMI(Xn+1,

[YnYn−1 · · ·Yn−l+1] | [XnXn−1 · · ·Xn−k+1]) =

=
1

α− 1

∑
xn

· · ·
∑

xn−k+1

p(xn, · · · , xn−k+1) · log
∑
xn+1

∑
yn

· · ·
∑

yn−l+1

pα(xn+1, yn, · · · , yn−l+1|xn, · · · , xn−k+1))

pα−1(xn+1|xn, · · · , xn−k+1)·

·pα−1(yn, · · · , yn−l+1|xn, · · · , xn−k+1)
(7)

Definition 6. We introduce the Partial Rényi Transfer En-
tropy. LetX,Y, Z be three random vectors,X = [Xn+1Xn · · ·
Xn−k+1], Y = [YnYn−1 · · ·Yn−l+1] and Z = [ZnZn−1 · · ·
Zn−m+1], where the current time point is n + 1 and k, l,m
are the time lags for X,Y and Z respectively. For clarity, let
w = [xn, · · · , xn−k+1, zn, · · · , zn−m+1]. Then,

PRTEY−>X(k, l,m) = CRMI(Xn+1, [YnYn−1 · · ·
Yn−l+1] | [XnXn−1 · · ·Xn−k+1], [ZnZn−1 · · ·

Zn−m+1]) =
1

α− 1

∑
w

p(w) · log
∑
xn+1

∑
yn

· · ·
∑

yn−l+1

pα(xn+1, yn, · · · , yn−l+1)|w)

[p(xn+1|w) · p(yn, · · · , yn−l+1|w)]
α−1

(8)

3. SIMULATION RESULTS

We used the Rényi information-theoretic equations to find
the direction of information transfer in an autoregressive(AR)
system of order 1. The system is composed of three coupled
processes:
X[n] = 0.6 ·X[n− 1] + ε1

Y [n] = 0.9 · Y [n− 1] +X[n− 1] + ε2

Z[n] = 0.2 · Z[n− 1] + 0.5 · Y [n− 1] +X[n− 1] + ε3

The processes X[n] and Y [n] are coupled in the direction
fromX[n] to Y [n], with the coupling delay equal to 1 and the
coupling strength equal to 1. The processes Y [n] andZ[n] are
coupled in the direction from Y [n] to Z[n], with the coupling
delay equal to 1 and the coupling strength equal to 0.5. The
processes X[n] and Z[n] are coupled in the direction from
X[n] to Z[n], with the coupling delay equal to 1 and the cou-
pling strength equal to 1. We added to the processes Gaussian
noise distributed as ε1, ε2, ε3 ∼ N (0, 10−6).

In the definition of the Rényi information-theoretic equa-
tions, we used time lags equal to k = l = m = 1. We
set the value of the parameter α = 3. We generated time
series [x(n)], [y(n)] , [z(n)], using Nt = 50 time points
for each time series. The system starts from an initial state
[x0 y0 z0] = [1 + U(0, 1) 1 + U(0, 1) 1 + U(0, 1)],
where U(0, 1) is the standard uniform distribution. The re-
sults are averaged over 100 simulations.

In order to make the computations more straightforward,
we transformed the conditional pmfs into joint pmfs, using
the identity p(x|y) = p(x,y)

p(y) from probability theory. As a re-
sult, the Rényi functionals that we used to detect the coupling
in the AR system became:

PRTEY−>X|Z(1, 1, 1) =
1

α− 1

∑
xn

∑
zn

p(xn, zn)·

· log
∑
xn+1

∑
yn

pα(xn+1, yn|xn, zn)

[p(xn+1|xn, zn) · p(yn|xn, zn)]
α−1 =

1

α− 1
·

·
∑
xn

∑
zn

p(xn, zn) · log
∑
xn+1

∑
yn

pα(xn+1, yn, xn, zn)

pα(xn, zn)
·

· pα−1(xn, zn)

pα−1(xn+1, xn, zn)
· pα−1(xn, zn)

pα−1(yn, xn, zn)
=

=
1

α− 1

∑
xn

∑
zn

p(xn, zn)·

· log
∑
xn+1

∑
yn

pα(xn+1, yn, xn, zn) · pα−2(xn, zn)

[p(xn+1, xn, zn) · p(yn, xn, zn)]
α−1 (9)

Similarly:

PRMI(X,Y |Z) =
1

α− 1

∑
z

p(z) · log
∑
x

∑
y

pα(x, y, z) · pα−2(z)

[p(x, z) · p(y, z)]α−1
(10)

RTEY−>X(1, 1) =
1

α− 1

∑
xn

p(xn) · log
∑
xn+1

∑
yn

pα(xn+1, yn, xn) · pα−2(xn)

[p(xn+1, xn) · p(yn, xn)]
α−1 (11)

RMI(X,Y ) =
1

α− 1
log
∑
x

∑
y

pα(x, y)

[p(x) · p(y)]
α−1 (12)
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We estimated the joint pmfs using multivariate kernel density
estimation implemented as the Matlab toolbox ”Kernel Den-
sity Estimation Toolbox for Matlab” [11]. We estimated two,
three and four-dimensional pmfs. We computed the marginal
pmfs from the joint pmf by summing out the dimensions that
were not of interest. We pluged-in the values of the estimated
joint and marginal pmfs, to obtain the estimate of the Rényi
information-theoretic equations.

Given the time series from the AR system, the objective is
to find the direction of the coupling and the time delay of the
coupling. Nothing is known about the structure of the sys-
tem, i.e. the value of the parameters, the coupling strength,
the coupling delay, the distribution of the noise and how many
terms there are in the equation of each process. For this pur-
pose, we measured the information transfer between the pro-
cesses Y and Z in both directions. We computed the differ-
ence between the information flow from Y to Z and the one
from Z to Y , where τ is the time delay, i.e.

∆RMI = RMI(Y [n], Z[n+ τ ])−RMI(Z[n], Y [n+ τ ])

∆RTE = RTEY−>Z(1, 1)−RTEZ−>Y (1, 1)

∆PRMI = PRMI(Y [n], Z[n+ τ ]|X)−
− PRMI(Z[n], Y [n+ τ ]|X)

∆PRTE = PRTEY−>Z|X(1, 1)− PRTEZ−>Y |X(1, 1).

We computed these measures for several coupling time de-
lays, from τ = 1 to τ = 10. The results are shown in the
following table. If these measures are positive, then the pro-
cesses Y and Z are coupled and the information flow is from
Y to Z. If they are negative, then the connection is from Z to
Y . ∆PRMI and ∆PRTE are positive for all time delays,
which shows that the connection is from Y to Z. In addition,
they correctly identify the coupling delay at τ = 1, because
their maximum value is at this time delay. They exhibit a
deacreasing trend as the coupling delay increases to τ = 10.
This indicates that, as the time delay increases, the processes
are less and less correlated.

Similarly to the other measures, ∆RTE has a decreasing
trend with the time delay. But, it fails to identify the correct
coupling delay, because its maximum value is at τ = 3 and it
has almost identical values for time delays 1, 2, 3. Moreover,
at time delays τ = 9 and τ = 10, the ∆RTE is negative,
meaning that it does not capture the directed link from Y to
Z. ∆RMI is negative for all time delays, which shows that
it cannot find the real direction of information propagation.

4. CONCLUSIONS

In this study, we used a version of the Rényi conditional α-
divergence to introduce the partial Rényi transfer entropy and
to derive an alternative definition of the partial Rényi mutual
information. We proved a theorem that states that this di-
vergence tends to the classical conditional Kullback-Leibler
divergence, as the Rényi α parameter tends to 1. As a result,

Table 1. Measures of Rényi information transfer for various
coupling time delays

Time ∆RMI ∆RTE ∆PRMI ∆PRTE
delay
τ = 1 −0.299 4.432 7.356 3.57
τ = 2 −0.22 4.431 7.18 3.37
τ = 3 −0.358 4.475 6.933 3.299
τ = 4 −0.479 4.229 6.669 3.272
τ = 5 −0.6 3.913 6.348 3.413
τ = 6 −0.7 3.214 6.132 3.059
τ = 7 −0.813 2.305 5.845 2.748
τ = 8 −0.891 0.564 5.629 2.123
τ = 9 −0.941 −1.275 5.315 1.915
τ = 10 −0.98 −3.023 5.005 1.47

all the Rényi information-theoretic functionals defined using
this divergence measure will tend to their Shannon counter-
parts, as the Rényi α parameter tends to 1. As an example,
we showed that the partial Rényi transfer entropy and the par-
tial Rényi mutual information correctly identify the direction
of the information flow and the coupling delay between two
coupled processes in an AR system of order 1.

As future work, we will investigate other types of es-
timates than the plug-in estimates used in this article and
analyse their statistical properties, as studied by the authors
of [10]. An overview of other available estimation methods
for information-theoretic functionals can be found in [1]. We
will also apply these Rényi information transfer measures to
other benchmark simulated systems: discrete-time systems,
such as the tent map, the Hénon map and the logistic map,
continuous-time systems, such as coupled Lorenz systems
and coupled Rössler-Lorenz systems, as well as to time series
from real complex systems. In addition, we will investigate
the influence of the Rényi α parameter on the accuracy of the
inference of information flow in these test systems.
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