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ABSTRACT

The NP-hard problem of optimizing a quadratic form over

the unimodular vector set arises in radar code design scenar-

ios as well as other active sensing and communication ap-

plications. To tackle this problem, a monotonically error-

bound improving technique (MERIT) is proposed to obtain

the global optimum or a local optimum of UQP with good

sub-optimality guarantees. The provided sub-optimality guar-

antees are case-dependent and may outperform the π/4 ap-

proximation guarantee of semi-definite relaxation.

Index Terms— Code design, radar codes, unimodular

codes, quadratic programming, peak-to-average-power ratio

(PAR)

1. INTRODUCTION

Unimodular codes are used in many active sensing and com-

munication systems mainly as a result of the their optimal

(i.e. unity) peak-to-average-power ratio (PAR). In a variety of

applications, such as receiver signal-to-noise ratio (SNR) op-

timization, synthesizing cross ambiguity functions, steering

vector estimation, and maximum likelihood (ML) detection,

the code approximation can be formulated as the optimiza-

tion of a quadratic form [1]-[8]. Therefore, we will study the

problem

UQP: max
s∈Ωn

sHRs (1)

where R ∈ C
n×n is a given Hermitian matrix, Ω represents

the unit circle, i.e. Ω = {s ∈ C : |s| = 1} and UQP stands

for Unimodular Quadratic Program(ming).

In [9], the NP-hardness of UQP is proven by employing a

reduction from an NP-complete matrix partitioning problem.

Studies on polynomial-time (or efficient) algorithms for UQP

have been extensive (e.g. see [9]-[22] and the references

therein). In particular, the semi-definite relaxation (SDR)

technique has been one of the most appealing approaches to

the researchers. We refer the interested reader to the survey

of the rich literature on SDR in [14].
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Throughout the paper, we assume that R is positive semi-

definite (if R is not positive semi-definite, one can make it so

using a diagonal loading without changing the solution to (1)).

We present the existing (analytically derived) sub-optimality

guarantee for SDR. Let vSDR be the expected value of the

UQP objective at the obtained randomized solution. Let vopt
represent the optimal value of the UQP objective. We have

γvopt ≤ vSDR ≤ vopt (2)

with the sub-optimality guarantee coefficient γ = π/4
[9][15]. For the sake of brevity, in the sequel the abbrevi-

ation SDR will be used for semidefinite relaxations followed

by the randomization procedure.

Besides SDR, the literature does not offer many other nu-

merical approaches to tackle UQP. In this paper, we propose

a monotonically error-bound improving technique (called

MERIT) that obtains the global optimum or a local opti-

mum of UQP with generally good sub-optimality guarantees.

MERIT provides real-time case-dependent sub-optimality

guarantees (γ) during its iterations. To the best of our knowl-

edge, such guarantees for UQP were not known prior to this

work. Using MERIT one may obtain better performance

guarantees compared to the analytical worst-case guarantees

(such as γ = π/4 for SDR). The provided case-dependent

sub-optimality guarantees are of practical importance in de-

cision making scenarios.

2. MERIT

To help the formulation of MERIT, Theorem 1 presents a bi-

jection among the set of matrices leading to the same solution.

Theorem 1. Let K(s) represent the set of matrices R for

which a given s ∈ Ωn is the global optimizer of UQP. Then

1. K(s) is a convex cone.

2. For any two vectors s1, s2 ∈ Ωn, the one-to-one map-

ping

R ∈ K(s1)⇐⇒ R⊙ (s0s
H
0 ) ∈ K(s2) (3)

(where s0 = s∗1 ⊙ s2) holds among the matrices in

K(s1) and K(s2).
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Fig. 1. An illustration of the result in Theorem 2. Kh(s)
denotes the convex cone of matrices with s as a stable point1

of the associated UQPs.

For proofs of the theorems in this paper, we refer the

reader to [1]. It is interesting to note that in light of the above

result, the characterization of the cone K(s) for any given

s = s̃ leads to a complete characterization of all K(s), s ∈
Ωn, and thus solving any UQP. While a complete tractable

characterization of K(s) cannot be expected (due to the NP-

hardness of UQP), approximate characterizations of K(s) are

possible. In the following, our goal is to provide an approxi-

mate characterization of the cone K(s) which can be used to

tackle the UQP problem.

Theorem 2. For any given s = (ejφ1 , · · · , ejφn)T ∈ Ωn, let

C(V s) represent the convex cone of matrices V s = D ⊙
(ssH) where D is any real-valued symmetric matrix with

non-negative off-diagonal entries. Also let Cs represent the

convex cone of matrices with s being their dominant eigenvec-

tor (i.e the eigenvector corresponding to the maximal eigen-

value). Then for any R ∈ K(s), there exists α0 ≥ 0 such that

for all α ≥ α0,

R+ αssH ∈ C(V s)⊕ Cs (4)

where ⊕ stands for the Minkowski sum of the two sets.

An intuitive illustration of the result in Theorem 2 is

shown in Fig. 1. Indeed, it can be shown that Theorem 2 is

valid even when s is a stable point1 of the UQP associated

with R. Finally, one can use C(V s) ⊕ Cs as an approximate

characterization of K(s) noting that the accuracy of such a

characterization can be measured by the minimal value of

α0. Hereafter, we study a computational method to obtain

an α0 which is as small as possible. We also formulate the

1The stationary points (s) of an UQP associated with R can be charac-

terized via the equation Rs = v ⊙ s where v ∈ Rn. If the vector v for

a given stationary point s was non-negative, then s is a stable point of UQP.

Any local optimum of UQP is also a stable point of UQP, see [1].

sub-optimality guarantee for a solution of UQP based on the

above K(s) approximation

Using the previous results, we build a sequence of matri-

ces (for which the UQP global optima are known) whose dis-

tance from the given matrix R is decreasing. The proposed

iterative approach can be used to solve for the global optimum

of UQP or at least to obtain a local optimum (with an upper

bound on the sub-optimality of the solution). We know from

Theorem 2 that if s is a stable point of the UQP associated

with R then there exist matrices Qs ∈ Cs, P s ∈ C(V s) and

a scalar α0 ≥ 0 such that R+α0ss
H = Qs+P s. The latter

equation can be rewritten as

R+ α0ss
H = (Q

1
+ P 1)⊙ (ssH) (5)

where Q
1
∈ C1, P 1 ∈ C(V 1). We first consider the case

of α0 = 0 which corresponds to the global optimality of s.

Consider the optimization problem:

min
s∈Ωn,Q

1
∈C1,P 1∈C(V 1)

‖R− (Q
1
+ P 1)⊙ (ssH)‖F (6)

Note that, as C1 ⊕ C(V 1) is a convex cone, the global opti-

mizers Q
1

and P 1 of (6) for any given s can be easily found.

On the other hand, the problem of finding an optimal s for

fixed R1 = Q
1
+P 1 is non-convex and hence more difficult

to solve globally (see below for details).

In the following, we introduce a suitable diagonal loading

of R that is necessary to tackle (6). Next the optimization

of the function in (6) is discussed through a separate opti-

mization over the three variables of the problem. The detailed

derivations can be found in [1].

• Diagonal loading of R: Let R = R⊙ (ssH)∗. We can

compute Q
1

and P 1 (hence R1 = Q
1
+P 1) for any initial-

ization of s. In order to guarantee the positive definiteness of

R1, define ε0 , ‖R − R1‖F . Then we diagonally load R

with λ > λ0 = −σn(R) + ε0:

R← R+ λI. (7)

• Optimization with respect to Q
1

: Let RQ = R⊙(ssH)∗−
P 1, H = 1T

n×1RQ1n×1, and

Q
1
(ρ) , ρIn + (In −

1n×n

n
)(RQ − ρIn)(In −

1n×n

n
).

Also let ρ0 denote the maximal eigenvalue of Q
1
(0) corre-

sponding to an eigenvector other than 1n×1/
√
n. Then for

fixed P 1 and s, the optimal solution Q
1

to (6) is given by

Q
1
= Q

1
(ρ⋆) (8)

where

ρ⋆ =

{
H
n

H
n
≥ ρ0,

ρ0 otherwise.
(9)
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• Optimization with respect to P 1: For fixed Q
1

and s,

(6) can be rephrased as

min
Q

1
∈C(V 1)

‖RP − P 1‖F (10)

where RP = R ⊙ (ssH)∗ − Q
1

. The solution of (10) is

simply given by

P 1(k, l) =

{
R′

P (k, l) R′
P (k, l) ≥ 0 or k = l,

0 otherwise,
(11)

where R′
P = ℜ{RP }.

• Optimization with respect to s: Define R1 = Q
1
+ P 1

and observe that ‖R−R1 ⊙ (ssH)‖2F can be rewritten as

‖R−Diag(s)R1 Diag(s∗)‖2F (12)

= tr(R2 +R2
1
)− 2ℜ{tr(R Diag(s)R1 Diag(s∗))}.

Moreover, it can be verified that [17]

tr(R Diag(s)R1 Diag(s∗)) = sH(R⊙RT
1
)s. (13)

As R ⊙ RT
1

is positive definite, we can employ the power

method-like iterations introduced in the Appendix to decrease

the criterion in (6), i.e. starting from the current s = s(0), a

local optimum of the problem can be obtained by the itera-

tions

s(t+1) = ej arg((R⊙RT

1
)s(t)). (14)

Finally, the proposed algorithmic optimization of (6)

based on the above results is summarized in Table 1-A. There

exist examples for which the objective function in (6) does

not converge to zero. As a result, the proposed method cannot

obtain a global optimum of UQP in such cases. However, it

is still possible to obtain a local optimum of UQP for some

α0 > 0. To do so, we solve the optimization problem,

min
s∈Ω,Q

1
∈C1,P 1∈C(V 1)

‖R′ − (Q
1
+ P 1)⊙ (ssH)‖F (15)

with R′ = R+α0ss
H , for increasing α0. It is worth pointing

out that achieving a zero value for the criterion in (15) implies

R + α0ss
H ∈ K(s). As a result, there exists a non-negative

v ∈ R
n such that (R + α0ss

H)s = v ⊙ s. Consequently,

Rs = (v − nα01) ⊙ s which implies s is a stationary point

of the UQP associated with R.

The optimization problem in (15) can be tackled using

the same tools as proposed for (6). In particular, note that

increasing α0 decreases (15), see [1]. The obtained solution

(s,Q
1
,P 1) of (6) can be used to initialize the corresponding

variables in (15). In effect, the solution of (15) for any α0 can

be used for the initialization of (15) with an increased α0.

Based on the above discussion and the fact that small val-

ues of α0 are of interest, a bisection approach can be used to

obtain α0. The proposed method for obtaining a local opti-

mum of UQP along with the corresponding α0 is described in

Table 1-B. Using the proposed algorithm, the task of finding

the minimal α0 can be accomplished within a finite number

of steps [1].

Table 1. The MERIT Algorithm
(A) The case of α0 = 0

Step 0: Initialize the variables Q
1

and P 1 with I . Let s be a random

vector in Ωn.

Step 1: Perform the diagonal loading of R as in (7) (note that this diagonal

loading is sufficient to keep R1 = Q
1
+ P 1 always positive definite).

Step 2: Obtain the minimum of (6) with respect to Q
1

as in (8).

Step 3: Obtain the minimum of (6) with respect to P 1 using (11).

Step 4: Minimize (6) with respect to s using (14).

Step 5: Goto step 2 until a stop criterion is satisfied, e.g. ‖R − (Q
1
+

P 1) ⊙ (ssH)‖F ≤ ǫ0 (or if the number of iterations exceeded a prede-

fined maximum number).

(B) The case of α0 > 0

Step 0: Initialize the variables (s,Q
1
,P 1) using the results obtained by

the optimization of (6) as in Table 1-A.

Step 1: Set δ (the step size for increasing α0 in each iteration). Let δ0 be

the minimal δ to be considered and α0 = 0.

Step 2: Let αpre
0

= α0, αnew
0

= α0 + δ and R′ = R+ αnew
0

ssH .

Step 3: Solve (15) using the steps 2-5 in Table 1-A.

Step 4: If ‖R′ − (Q
1
+ P 1)⊙ (ssH)‖F ≤ ǫ0 do:

• Step 4-1: If δ ≥ δ0, let δ ← δ/2 and initialize (15) with the

previously obtained variables (s,Q
1
,P 1) for α0 = αpre

0
. Goto

step 2.

• Step 4-2: If δ < δ0, stop.

Else, let α0 = αnew
0

and goto step 2.

2.1. Sub-optimality Analysis

In this sub-section, we show how the proposed method can

provide real-time sub-optimality guarantees and bounds dur-

ing its iterations. Let α0 = 0 (as a result R′ = R) and define

E , R′ − (Q
1
+ P 1)⊙ (ssH)︸ ︷︷ ︸

Rs

(16)

where Q
1
∈ C1 and P 1 ∈ C(V 1). By construction, the

global optimum of the UQP associated with Rs is s. We

have that

max
s′∈Ωn

s′HRs′ ≤ max
s′∈Ωn

s′HRss
′ + max

s′∈Ωn

s′HEs′

≤ max
s′∈Ωn

s′HRss
′ + nσ1(E)

= sHRss+ nσ1(E) (17)

Furthermore,

max
s′∈Ωn

s′HRs′ ≥ max
s′∈Ωn

s′HRss
′ + min

s′∈Ωn

s′HEs′

≥ max
s′∈Ωn

s′HRss
′ + nσn(E)

= sHRss+ nσn(E) (18)

As a result, an upper bound and a lower bound on the objec-

tive function for the global optimum of (6) can be obtained

at each iteration. Next, suppose that we have to increase
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Fig. 2. A comparison of power method-like iterations, the

curvilinear search of [18] with Barzilai-Borwein (BB) step

size, and MERIT: (top) the UQP objective; (bottom) the re-

quired time for solving an UQP (n = 10) with same initial-

ization.

α0 in order to obtain the convergence of ‖E‖F to zero. In

such a case, we have that R = Rs − α0ss
H and as a re-

sult, maxs′∈Ωn s′HRss
′ − α0n

2 ≤ maxs′∈Ωn s′HRs′ ≤
maxs′∈Ωn s′HRss

′ , or equivalently,

sHRss− α0n
2 ≤ max

s′∈Ωn

s′HRs′ ≤ sHRss. (19)

The provided case-dependent sub-optimality guarantee is thus

given by

γ =
sHRs

sHRss
= 1− α0n

2

sHRss
=

sHRs

sHRs+ α0n2
. (20)

3. NUMERICAL EXAMPLES AND DISCUSSION

In order to examine the performance of the proposed method,

several numerical examples will be presented. In all cases,

we stopped the iterations when ‖E‖F ≤ 10−9. Moreover,

R is a random positive (semi)definite matrix; see [1] for de-

tails. We use the power method-like iterations discussed in

Appendix A, and MERIT, as well as the curvilinear search of

[18] with Barzilai-Borwein (BB) step size, to solve an UQP

(with n = 10) based on the same initialization. The resultant

UQP objectives along with required times (in sec) versus it-

eration number are plotted in Fig. 2. It can be observed that

the power method-like iterations approximate the UQP solu-

tion much faster than the curvilinear search of [18]. On the

other hand, both methods are much faster than MERIT. This

type of behavior, which is not unexpected, is due to the fact

n Rank

(d)

#problems for

which γ = 1
Average γ Average SDR time

Average MERIT time

8 2 17 0.9841 1.08
8 16 0.9912 0.81

2 15 0.9789 2.08
16 4 13 0.9773 0.95

16 4 0.9610 0.92

Table 2. Comparison of the performance of MERIT (see Ta-

ble 1) and SDR [22] when solving the UQP for 20 random

positive definite matrices of different sizes n and ranks d.

that MERIT is not designed solely for local optimization; in-

deed, MERIT relies on a considerable over-parametrization

in its formulation which is the cost paid for easily derivable

sub-optimality guarantees. In general, one may employ the

power method-like iterations to obtain a fast approximation

of the UQP solution (e.g. by using several initializations),

whereas for obtaining sub-optimality guarantees one can re-

sort to MERIT.

Next, we approximate the UQP solutions for 20 full-rank

random positive definite matrices of sizes n ∈ {8, 16}. In-

spired by [20] and [21], we also consider rank-deficient ma-

trices R with rank = d ≪ n. The performance of MERIT

for different values of d is shown in Table 2. Note that, in

general, the provided sub-optimality guarantees γ are consid-

erably larger than π/4 of SDR. We also employ SDR [22] to

solve the same UQPs. In this example, we continue the ran-

domization procedure of SDR until reaching the same UQP

objective as for MERIT. A comparison of the computation

times of SDR and MERIT can also be found in Table 2.

A. APPENDIX: POWER METHOD FOR UQP

Let {s(t+1)}∞t=0 be a sequence of unimodular codes where

s(t+1) is the minimizer of the criterion ‖s(t+1) − Rs(t)‖2
for s(t+1) ∈ Ωn. The minimizing vector s(t+1) of the latter

criterion is simply given by the following power method-like

iteration:

s(t+1) = ej arg(Rs(t)) (21)

Note that ‖s(t+1)−Rs(t)‖22 = const−2ℜ{s(t+1)HRs(t)}.
As a result, s(t+1) is also the maximizer of the criterion

ℜ{s(t+1)HRs(t)}. Moreover, if s(t+1) 6= s(t) we have that

s(t+1)HRs(t+1) − s(t)HRs(t) (22)

= (s(t+1) − s(t))HR (s(t+1) − s(t))

+ 2ℜ{s(t+1)HRs(t)} − 2 s(t)HRs(t) > 0

as ℜ{s(t+1)HRs(t)} > s(t)HRs(t). Therefore, the UQP

objective is increasing through the power method-like it-

erations in (21). It can also be shown that the sequence

{s(t+1)}∞t=0 obtained by (21) converges to a local optimum

(or a saddle point) of the UQP, see [1].
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