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ABSTRACT

In this study, we consider performance improvement of an ar-
ray of fixed estimators by using stochastic design techniques.
The optimal design is investigated both in the absence and
presence of an average power constraint. Two different per-
formance criteria are considered; the average Bayes risk and
themaximumBayes risk. It is shown that the optimal stochas-
tic parameter design results in a randomization between dif-
ferent numbers of parameter values depending on the type of
the performance criterion.

Index Terms— Stochastic parameter design, Bayes risk,
parameter estimation.

1. INTRODUCTION

In conventional estimation problems, the aim is to design the
optimal estimator for a given distribution of observations in
order to minimize a certain cost function. The estimators
considered in these conventional formulations can be catego-
rized into two groups based on the prior information about
the parameter to be estimated. If there exists a prior infor-
mation about the parameter, Bayesian estimators, such as
the minimum mean-squared error (MMSE) estimator and the
minimum mean-absolute error (MMAE) estimator, are com-
monly used [1]. On the other hand, when there is no prior
information about the parameter, the minimum variance unbi-
ased estimator (MVUE) or the maximum likelihood estimator
(MLE) can be employed [2]. All these approaches require
designing the optimal estimator under certain constraints. In
a recent study, an alternative formulation is investigated by
considering the stochastic design of a parameter when the
estimator is fixed, and it is shown that the performance of
the given estimator can be improved by optimal stochastic
parameter design, which can involve randomization of the
parameter between at most two different values [3].

Signal randomization has also been employed in various
frameworks to improve the performance of detection and es-
timation systems [4]-[9]. For example, the detection proba-
bility of certain detectors can be increased by the addition of
a randomized noise component [4, 5]. Also, transmitting ran-
domized signals can reduce the probability of error for power
constrained communication systems in the presence of non-
Gaussian noise [7]. In addition, performance of some subop-
timal estimators can also be enhanced by adding randomized
noise to the observations before the estimation process [9].

In this study, the aim is to propose a framework for the
optimal stochastic design of multiple parameters. In this way,
the approach in [3] for the single parameter case is extended to

the multi-parameter scenarios, in which the optimal stochas-
tic design of multiple parameters is performed in order to
optimize the performance of fixed estimators. Two different
performance criteria, the total Bayes risk and the maximum
Bayes risk, are considered, and the characteristics of optimal
parameter distributions are specified. A numerical example is
presented in order to illustrate the improvements achievable
via the proposed approach.

2. STOCHASTIC DESIGN FORMULTIPLE
PARAMETERS

In this section, the aim is to establish a framework for the
stochastic design of multiple parameters for a given set of
fixed estimators. Without loss of generality, all the formula-
tions and figures will be presented for the two parameter case
for the sake of simplicity. It is possible to extend the results
to the cases with more than two parameters.

Consider a parameter estimation scenario in which there
exist two parameters, θ1 and θ2. The aim is to send informa-
tion about these two parameters from two separate devices,
A1 and A2, to two devices, B1 and B2, respectively, over ad-
ditive noise channels as depicted in Fig. 1. Unlike a standard
estimation scenario, parameter θi is not necessarily transmit-
ted as it is. But instead, device Ai can transmit any function
of θi, say sθi

. Function sθi
can be of any type; it can be a

deterministic function of θi, or it can be a stochastic function
as well. The aim of this study is to find the optimal sθi

, i.e.,
the optimal distribution of sθi

, for each θi.
It should be noted that the difference between the single

parameter case considered in [3] and the multi-parameter case
investigated in this study is not only related to the number of
parameters. The proposed multi-parameter formulation also
takes into account the possible interference between the pa-
rameter related signals, as shown by the dashed cross lines in
Fig. 1. Considering two parameters, the received signal (ob-
servation) at device Bi can be expressed as

yi = sθi
+

2
∑

j=1

j 6=i

ρ sθj
+ ni (1)

for i ∈ {1, 2}, where ρ is the multiplier that is set according
to the interference between the parameter related signals, and
ni denotes the channel noise, which has a probability den-
sity function (PDF) represented by pni

(·). Each device Bi

tries to estimate θi based on the corresponding observation
yi specified by (1). It is assumed that these devices employ

fixed estimators specified by θ̂i(yi) in order to estimate θi.
Considering parameters θi as elements of vector θ, the prior
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Fig. 1. System model. DevicesA1 andA2 transmit stochastic
signals sθ1

and sθ2
for each value of parameters θ1 and θ2,

respectively. DevicesB1 andB2 estimate θ1 and θ2 based on
the noise corrupted version of sθ1

and sθ2
.

distribution of θ is denoted by w(θ), and the parameter space
in which θ resides is represented by Λ.

The aim is to find the optimal probability distribution of
sθ for each θ ∈ Λ in order to minimize a function of the
Bayes risk for the given estimators, where sθi

’s are the el-
ements of the vector sθ. Since the parameters can interfere
with each other, the optimization cannot be performed inde-
pendently for each parameter. Hence, the optimization should
be performed jointly.

2.1. Unconstrained Optimization

In order to find the optimal probability distribution of sθ, a
certain cost function is considered and the optimization is per-
formed by minimizing that cost function. In this section, no
constraints are considered for the optimization problem. In
that case, the optimal stochastic parameter design can be for-
mulated as

{popt
sθ

, θ ∈ Λ} = arg min
{ps

θ
, θ∈Λ}

r(θ̂) (2)

where {psθ
, θ ∈ Λ} denotes the set of PDFs for sθ for all

possible values of parameter θ, and r(θ̂) is the cost func-
tion for the overall system. For the single parameter case,
the Bayes risk of the estimator was a natural choice for this
cost function [3]. On the other hand, it is possible to con-
sider different risk functions for the multi-parameter case. In
this section, two different cost functions are considered. The
first one is the sum of the Bayes risks of the estimators in
the system (called the total Bayes risk), and the second one is
the maximum of the Bayes risks of the estimators (called the
maximum Bayes risk). For both of these cost functions, the
Bayes risk of each estimator should be calculated first. For
the two parameter case, the Bayes risk of the first estimator
can be expressed as

r(θ̂1) =

∫

Λ1

w(θ1)

∫

psθ1
(x1)

∫

C[θ̂(y1), θ1]

×
∫

psθ2
(x2) pn1

(y1 − x1 − ρx2) dx2 dy1 dx1 dθ1 (3)

where C[θ̂(y1), θ1] represents the cost of estimating θ1 as

θ̂(y1) [2], and psθi
is the PDF of the signal related to pa-

rameter i. (The Bayes risk of the second estimator can be

expressed similarly.) Defining an auxiliary function gθ1
(x)

for the first estimator as

gθ1
(x) ,

∫

C[θ̂1(y1), θ1] pn1
(y1 − x1 − ρx2) dy1 (4)

where x = [x1 x2], and a similar function for the second
estimator, the total Bayes risk can be stated as

r(θ̂) =

∫

Λ

w(θ)

∫

psθ
(x) (gθ1

(x) + gθ2
(x)) dx dθ

=

∫

Λ

w(θ) E{g̃θ(sθ)} dθ (5)

where θ̂ = [θ̂1 θ̂2] and

g̃θ(x) = gθ1
(x) + gθ2

(x) . (6)

In (5), each expectation operation is over the PDF of sθ for a
given value of θ. When there are no constraints on the design

of sθ, r(θ̂) given by (5) can be minimized if the PDF of sθ as-
signs all the probability to the minimizer of g̃θ in (6) for each

θ.1 In other words, the solution of the optimization problem
in (2) can be simplified as

popt
sθ

(x) = δ(x − sunc
θ ) , sunc

θ = arg min
x

g̃θ(x) (7)

for all θ ∈ Λ . Since the solution requires sθ to assign all the
probability to a single point, it can be concluded that optimal
PDFs for the stochastic parameter design are the ones with
single point masses. Hence, the deterministic parameter de-
sign is optimal and there is no need for stochastic modeling.
Also it can be observed from (7) that the solution is indepen-
dent of the prior distribution w(θ), since the optimal solution
is obtained for each θ separately.

When the maximum Bayes risk criterion is considered,
the cost function in (5) can be updated as

r(θ̂) =

∫

Λ

w(θ) max
i∈{1,2}

(
∫

psθ
(x) gθi

(x) dx

)

dθ

=

∫

Λ

w(θ) max
i∈{1,2}

(E{gθi
(sθ)}) dθ (8)

for which the solution is still a PDF with a single point mass.
Hence, for the unconstrained case, considering the total risk
or the maximum risk does not change the structure of the solu-
tion. However, in practice, the values of sθ cannot be chosen
without any constraints. In the next section, the cases with
average power constraints are investigated.

2.2. Constrained Optimization

In this section, an average power constraint is considered in
the formulation of the stochastic design problem. Although
this is a specific type of a constraint, other types of constraints
can also be incorporated into the theoretical analysis as well.

Consider an average power constraint in the form of

E{‖sθ‖2} ≤ Aθ (9)

for θ ∈ Λ, where ‖sθ‖ is the Euclidean norm of vector sθ , and
Aθ denotes the average power constraint for θ. In general,
constraint Aθ can be a function of θ.

1If there are multiple minimizers, any (combination) of them can be cho-
sen for the optimal solution.
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From (5) and (9), the optimal stochastic parameter design
problem for the total Bayes risk criterion can be stated as

min
{ps

θ
, θ∈Λ}

∫

Λ

w(θ) E{g̃θ(sθ)} dθ

subject to E{‖sθ‖2} ≤ Aθ , ∀θ ∈ Λ (10)

where g̃θ(·) is as defined in (6). Due to the structure of the ob-
jective function and the constraint, the constrained optimiza-
tion problem in (10) can be solved separately for each θ as

min
ps

θ

E{g̃θ(sθ)} subject to E{‖sθ‖2} ≤ Aθ (11)

for θ ∈ Λ. Hence, the solution does not depend on the prior
distribution w(θ).

When the maximum Bayes risk criterion is considered,
the problem in (11) takes the following form:

min
ps

θ

max
i∈{1,2}

(E{gθi
(sθ)}) subject to E{‖sθ‖2} ≤ Aθ (12)

Similar optimization problems in the form of (11) and
(12) have been investigated in the literature [3]-[4]. The prob-
lem in (11) has the same form as the one considered in [3].
Therefore, the statistical behavior of the optimal solution is
the same; that is, the optimal solution can be achieved by
a randomization between at most two different values of θ.
Then, the optimal solution can be obtained based on a similar
approach to that in [3]. On the other hand, the problem in
(12) has a different form than that in [3]. Based on arguments
similar to those in [11], the following result can be obtained.
Proposition 1: Suppose gθ is a continuous function and

each component of sθ resides in a finite closed interval. Then,
an optimal solution to (12) can be expressed as

popt
sθ

(x) =

3
∑

j=1

λθj
δ(x − sθj

) (13)

where λθj
≥ 0 and

∑3

j=1 λθj
= 1 .

Proof: Consider the set of all (gθ1
(sθ), gθ2

(sθ), ‖sθ‖2)
triplets and the set of all (E{gθ1

(sθ)} , E{gθ2
(sθ)} , E{‖sθ‖2})

triplets, and denote them as U and W , respectively. Namely,
U = {(u1, u2, u3) : u1 = gθ1

(sθ) , u2 = gθ2
(sθ) , u3 =

‖sθ‖2 , ∀ sθ} and W = {(w1, w2, w3) : w1 = E{gθ1
(sθ)} ,

w2 = E{gθ2
(sθ)} , w3 = E{‖sθ‖2} , ∀ psθ

}. As in [4], [7],
and [11], it can be shown that the convex hull of U is equal
to W . Then, based on Carathéodory’s theorem [12], it is
concluded that any point in W can be expressed as a convex
combination of at most four points in U . In addition, since
an optimal PDF should achieve the minimum value, it must
correspond to the boundary of W , resulting in a convex com-
bination of at most three points in U . Therefore, an optimal
solution can be expressed as in (13). �

Proposition 1 states that the optimal solution can be
achieved by a randomization between at most three different
values for each θ. Based on this result, the optimal stochastic
parameter design problem can be expressed as

min
{λθj

, sθj
}3

j=1

max
i∈{1,2}

(

3
∑

j=1

λθj
gθi

(sθj
)

)

(14)

subject to

3
∑

j=1

λθj
‖sθj

‖2 ≤ Aθ ,

3
∑

j=1

λθj
= 1 , λθj

∈ [0, 1]

for θ ∈ Λ. Compared to (12), the formulation in (14) pro-
vides a significant simplification as it requires optimization
over a finite number of variables instead of over all possible
PDFs. Since generic cost functions and noise distributions
are considered in the theoretical analysis, gθ1

and gθ2
in (4)

are quite generic and the optimization problem in (14) can be
nonconvex in general. Therefore, global optimization tech-
niques such as particle swarm optimization (PSO) or differ-
ential evolution can be used to obtain the solution [13, 14].
Remark 1: In the generic multi-parameter case with K

parameters, the previous results can be extended as follows:
For the total Bayes risk criterion, the optimal solution is in the
form a probability distribution with two point masses for any
value of K . On the other hand, for the maximum Bayes risk
criterion, the optimal solution is achieved by randomization
among at most (K + 1) different values of θ.

3. NUMERICAL RESULTS

For a numerical example, consider an estimation problem in

which parameter vector θ = [θ1 θ2]
T is to be estimated based

on observation vector y = [y1 y2]
T , which is modeled as

y = sθ + ρ(1− I)sθ + n (15)

where sθ = [sθ1
sθ2

]T , n = [n1 n2]
T , I is the identity ma-

trix of size 2 × 2, and 1 is the matrix of ones with the same
size. n is the additive noise component, where n1 and n2

are independent and identically distributed Gaussian random
variables, specified by PDFs pn1

(n) = pn2
(n) = exp{−(n−

µ)2/(2σ2)}/(
√

2π σ). The estimator is given by θ̂(y) = y
where each parameter is estimated independently based on
the corresponding observation. The cost function for each
parameter is selected as the uniform cost function, which is

expressed as C[θ̂i(yi), θi] = 1 if |θ̂i(yi) − θi| > ∆ and

C[θ̂i(yi), θi] = 0 otherwise for i = 1, 2. Based on this
model, gθ1

in (4) can be obtained as

gθ1
(x) = Q

(

x1 + ρx2 − θ1 + µ + ∆

σ

)

+ Q

(−x1 − ρx2 + θ1 − µ + ∆

σ

)

(16)

where Q(x) = (1/
√

2π)
∫∞

x
exp{−t2/2}dt denotes the Q-

function. E{‖sθ‖2} ≤ ‖θ‖2 is considered for each θ as the
constraint stated in (9). gθ2

for the second parameter can be
obtained similarly.

For the numerical examples, the parameter spaces for both
parameters are specified as Λ1 = Λ2 = [−10, 10]. Also, sθi

can take values in the interval [−10, 10] under the average
power constraint, E{‖sθi

‖2} ≤ ‖θi‖2 for i = 1, 2. In addi-
tion, the Gaussian noise is taken to be zero mean with σ = 0.5
and ρ is chosen to be 0.25. Since the noise is a zero-mean

random variable, θ̂(y) = y can be regarded as a practical es-

timator.2 Finally, ∆ = 1 is considered for the uniform cost
function described in the previous paragraph.

2Although this is not an optimal estimator, it can be used in practice due
to its simplicity compared to the optimal estimator.
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θ1 θ2 λθ1
sθ1

λθ2
sθ2

λθ1
sθ1

λθ2
sθ2

λθ3
sθ3

-5 -5 1 (-4,-4) - - 1 (-4,-4) - - - -
-5 2 0.721 (-5.42,3.09) 0.279 (0.383,1.788) 0.654 (-5.403,2.977) 0.183 (0.645,1.769) 0.163 (-4.482,-1.202)
-5 5 0.513 (-4.525,-1.136) 0.487 (-6.290,6.340) 0.488 (-6.282,6.255) 0.269 (0.771,4.767) 0.243 (-4.560,-1.180)
5 -2 0.714 (5.438,-3.119) 0.286 (-0.503,-1.748) 0.716 (5.323,-2.817) 0.188 (-0.574,-1.743) 0.116 (4.533,0.887)
5 5 1 (4,4) - - 1 (4,4) - - - -

Table 1. Optimal stochastic solution popt
sθ

(x) = λθ1
δ(x−sθ1

)+λθ2
δ(x−sθ2

) for total Bayes risk criterion (left), and optimal

stochastic solution popt
sθ

(x) = λθ1
δ(x− sθ1

) + λθ2
δ(x− sθ2

) + λθ3
δ(x− sθ3

) for the maximum Bayes risk criterion (right).
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Fig. 2. Total Bayes risk versus θ1 and θ2.
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In Fig. 2, the total Bayes risks for the stochastic parameter
design, the unconstrained parameter design and the conven-
tional parameter design (which transmits the parameters as
they are; i.e., employs sθi

= θi) are illustrated. Also in Fig. 3,
the total Bayes risks for the stochastic parameter design and
the deterministic parameter design (which employs no ran-
domization) are compared. It is observed that the stochastic
design achieves an improvement over the deterministic and
conventional designs. Also, for some values of θ1 and θ2,
the performance of the stochastic design is the same as the
unconstrained design.

In Fig. 4, the maximum Bayes risks for the stochastic pa-
rameter design, the unconstrained parameter design and the
conventional parameter design are shown. Also, in Fig. 5, the
maximumBayes risks for stochastic parameter design and the
deterministic parameter design are compared. Again, similar
observations as in the previous scenario are made.

In Table 1, the optimal solutions for the stochastic, the
deterministic and the unconstrained parameter design ap-
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Fig. 4. Maximum Bayes risk versus θ1 and θ2.
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Fig. 5. Maximum Bayes risk versus θ1 and θ2.

proaches are presented for various values of θ. It can be
observed that the maximum number of mass points is two for
the total Bayes risk criterion, and it is three for the maximum
Bayes risk criterion in accordance with the theoretical results.

4. CONCLUSIONS

In this study, the optimal stochastic design of multiple pa-
rameters has been investigated for a given set of fixed estima-
tors. Two different performance criteria have been proposed;
namely, the total Bayes risk criterion and the maximumBayes
risk criterion. It has been obtained that, in the presence of K
parameters, the optimal stochastic parameter design results in
a randomization among at most two and (K +1) different pa-
rameter values for the total and maximum Bayes risk criteria,
respectively. The numerical examples have been presented to
investigate the theoretical results, and to illustrate the level of
improvements achievable via the proposed approach.
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