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Abstract—We develop the General Method of Moments
(GMM) Approach for estimating the covariance matrices of
non-Gaussian distributions with convex structure. The GMM
turns out to be a non-convex optimization problem, thus
making the addition of prior knowledge in form of convex
structure constraints cumbersome. We propose a different
approach to this estimator and show that the Tyler’s estimator
can be obtained as a solution of a convexly relaxed GMM
problem, thus making the imposition of convex constraints
easier. This new framework provides consistent solutions which
outperform the standard projection methods. As an application
of this method we consider Gaussian Compound samples with
Toeplitz and banded covariance matrices. We provide synthetic
numerical data and demonstrate the performance advantages
of our method.

Index Terms—Elliptical distribution, Tyler’s scatter esti-
mator, Generalized Method of Moments, non-Gaussian con-
strained covariance estimation.

I. INTRODUCTION

Covariance matrix estimation is a fundamental problem
in the field of statistical signal processing. Many other
algorithms for detection and inference rely on accurate
covariance estimates [1, 2]. The problem is well understood
in the Gaussian unstructured case. But becomes significantly
harder when the underlying distribution is non-Gaussian,
for example in elliptical distributions, and when there is
prior knowledge on the structure. In this paper, we propose
a unified framework for covariance estimation in elliptical
distributions with general convex structure.

Over the last years there was a great interest in covariance
estimation with known structure. The motivation to these
works is that in many modern applications the dimension of
the underlying distribution is large and there are not enough
samples to estimate it correctly. The prior information on the
structure reduces the degrees of freedom in the model and
allows accurate estimation with a small number of samples.
This is clearly true when the structure is exact, but also
when it is approximate due to the well known bias-variance
tradeoff. Prior knowledge on the structure can originate from
the physics of the underlying phenomena, e.g., [3, 4, 5, 6],
or from similar datasets, e.g., adjacent cells in radar systems
[7]. When the structure is defined using a convex set, a
natural and computationally efficient solution is to project
the naive unstructured estimators onto this set.

Many covariance structures are easily represented in a
convex form. Probably the most classical convex covariance
structure is the Toeplitz model. It arises naturally in the
analysis of stationary time series which are used in a wide

range of applications in many fields including radar imaging,
target detection, speech recognition, and communication
systems, [3, 4, 8]. Toeplitz matrices are also used to model
the correlation of cyclostationary processes in periodic time
series [9]. In many applications the number of parame-
ters can be reduced, thus making the covariance matrix
sparse. A popular convex sparse model is banded covariance,
which represents reduction in statistical relation between
random variables [10]. Another important example of sparse
structure is the SPICE estimator, which was proposed in
[6] to treat high-dimensional arrays processing problems,
where the covariance structure is approximated by a low-
dimensional linear combination of rank one matrices. An
additional kind of convex structure is low-rank covariance
approximation, which is actually a regularization of non-
robust models [11]. In the decades, all of these structures
have been successfully considered in the Gaussian case
[10, 12].

In a different line of works, there have been observed an
increasing interest in robust covariance estimation for non-
Gaussian distributions [13]. Significant attention is being
paid to the family of elliptical distributions, which in-
cludes as particular cases generalized Gaussian distribution,
compound Gaussian and many other [14]. The elliptical
models are used to measure radar clutter [15], noise and
interference in indoor and outdoor mobile communication
channels [16] and other problems. The theory of robust
covariance M-estimators was mostly developed by Maronna
[17]. Following him Tyler [18] have proposed a robust scatter
estimator which has become widely used in the last decades
[13, 19, 20]. One of the most prominent disadvantages of
these methods is that the estimator is given as a solution to
a non-convex optimization problem, thus making imposition
of additional constraints rather difficult. One of the options to
cure this obstacle is geodesic convexity. It has been recently
shown that different M-estimators are geodesically convex,
which significantly simplifies their treatment [21]. But still, if
one wants to impose an additional constraint on the scatter
matrix it must be formulated in a form of a geodesically
convex set, which is not always possible, see for example
[22].

In the present work we derive COCA - COnvexly Con-
strAined Covariance Matching estimator. It is based on the
principle of Generalized Method of Moments (GMM) [23].
It searches for a covariance of a given convex structure that
minimizes the norm of a simple moment’s identity. This
identity is in fact the optimality condition of the successful
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Tyler’s estimate. COCA tries to simultaneously satisfy this
condition while constraining the structure. Unfortunately,
this requires the solution to a high dimensional non-convex
minimization. Instead, we propose a relaxation and express
COCA as a standard convex optimization with linear ma-
trix inequalities which can be computed using off-the-shelf
numerical solvers. Interestingly, we prove two promising
results. First, in the unconstrained case, COCA is tight and
identical to Tyler’s estimate. This result basically “convexi-
fies” Tyler’s estimate. Second, in the structured case, COCA
is asymptotically tight and hence consistent. Finally, we
demonstrate the finite sample advantages of COCA over
existing methods using synthetic numerical simulations.

The paper is organized in the following way. First, we
formulate the problem and briefly describe the common ways
of solving it: Tyler’s estimator and GMM. We then propose
convex relaxation of the GMM problem and show that the
solution of the relaxed problem coincides with the Tyler’s
estimator. After this we prove that adding convex structure
does not affect consistency. Finally, we provide numerical
examples and applications showing the performance advan-
tages of the proposed method.

We denote by P(p) the closed cone of symmetric positive
semi-definite p×p matrices. We consider below the real case
for simplicity. Exactly the same reasoning applies to convex
case, with transposition replaced by Hermitian conjugation.

II. PROBLEM FORMULATION

Consider a p dimensional, zero mean, elliptically dis-
tributed random vector x. Such a vector can be represented
as [14]

x = rΛu, (1)

where u is a k dimensional random vector, uniformly dis-
tributed on the unit hypersphere, r is a nonnegative random
variable, Λ ∈ Rp×k [14]. The random variable r is called the
generating variate of x and it is stochastically independent
of u. We assume that the distribution of this random variable
is unknown.

The parameter CTrue = ΛΛT is referred to as the disper-
sion or shape matrix of x and coincides with its covariance
matrix (up to a scaling factor). In many applications, it is
common to assume prior information on the structure of this
matrix. In particular, we assume that it belongs to a known
convex subset S ⊂ P(p). Typical examples of such subsets
are:
• Toeplitz: In stationary time series, the covariance be-

tween the i-th and the j-th components depend only
on the the difference |i − j|. Such kind of processes
is encountered very often in many engineering areas
including statistical signal processing, radar imaging,
target detection, speech recognition, and communica-
tions systems, [3, 4, 8, 9, 24, 25].

• Banded: A natural approach to covariance modeling
is to formulate the reduction in statistical relation us-
ing the notion of independence or correlation, which
corresponds to sparsity in the covariance matrix [10].
Assuming that i-th element of the random vector is
uncorrelated with the j-th if |i − j| > k leads to k-
banded structure, also known as time varying moving
average models.

• Low rank: One of the most common covariance models
involves a low dimensional principal subspace plus
white noise [26]. A typical convex representation of
such models is CTrue = X+σ2I together with a bound
on the nuclear norm of X ∈ P(p). In this model, σ2 is
the known and fixed variance of the noise.

• Linear parameterization: Many interesting models
can be expressed as a linear combination of known
matrices. In particular, a modern approach to estimation
of direction of arrivals of multiple signals involves a
covariance of the form CTrue =

∑k
i=1 piaia

T
i where

ai constitute a dense grid of possible directions, and
pi are their corresponding coefficients. Typically, the l1
norm of these sparse coefficients is constrained. See for
example [6].

We can now state the problem addressed in this paper. Let
xi, i = 1, . . . , n be independent and identically distributed
(i.i.d) copies of x with CTrue ∈ S . Given these realizations
and knowledge of S, we are interested in estimation of the
matrix CTrue.

III. EXISTING SOLUTIONS

A. Sample Covariance

The classical solution to the above covariance estimation
problem is the sample covariance matrix defined by

CSample =
1

n

n∑
i=1

xix
T
i . (2)

The sample covariance estimator always exists and is asymp-
totically consistent in any distribution with bounded mo-
ments by the Law of Large Numbers. In the Gaussian
case when n ≥ p, it also maximizes the likelihood and
is asymptotically efficient. In the non-Gaussian case, it has
been extensively studied [27], any is generally suboptimal.
Furthermore, it does not exploit any additional structure
knowledge.

B. Tyler’s M-estimation approach

The most popular approach to covariance estimation in
elliptical distribution is due to Tyler [18]. This estimator is
defined as the fixed point solution to:

CTyler =
p

n

n∑
i=1

xix
T
i

xT
i [CTyler]

−1
xi

. (3)

Since CTyler is defined only up to scale, it has to be fixed
by some additional constraint like Tr

(
CTyler

)
= 1. When

n > p, it has been proven that a simple fixed point iteration
converges to this unique solution [17]. This estimator is
asymptotically consistent in all elliptical distributions. In
fact, it is has been shown to maximize the likelihood of
the normalized samples

s =
x

||x||2
=

rΛu

||rΛu||2
=

Λu

||Λu||2
, (4)

which are independent of the values of the generating variate.
The advantages of Tyler’s estimator are its simplicity and
robustness. Its drawbacks are that it does not exist if n < p
and does not exploit known structure. In [20] knowledge
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based variants of the fixed point iteration were proposed
without convergence analysis. Recently, regularized and
structured versions of Tyler’s estimate were proposed in
[19, 21, 21, 22, 28] based on the theories of concave
Perron Frobenius and geodesic convexity. Unfortunately,
these approaches are limited in its their modeling capabilities
are cannot deal with general convex models as described
above.

C. Projection

A reasonable approach to explore the covariance structure
is to use a projection. Given any estimator Ĉ, e.g., the sample
covariance or Tyler, its projection onto S is defined as

CProj
S

(
Ĉ
)

= argmin
M∈S

||M− Ĉ||, (5)

where ‖ · ‖ is some norm. For simple structures as described
above, the projection is a convex optimization problem
which can be efficiently solved using standard numerical
packages, e.g., CVX, [29, 30]. The main advantage is that,
when CTrue ∈ S, the projection CProj is usually closer to
CTrue than Ĉ is. The disadvantage is that it requires a two-
step solution which does not take into account the distri-
bution properties and structure information and is therefore
suboptimal.

IV. COCA-ESTIMATOR

In this section, we propose a new COCA - the COnvexly
ConstrAined covariance estimator for elliptical distributions.
Unlike the existing solutions, COCA exploits both the ellip-
tical nature and the structure of the underlying distribution.
COCA is based on the Generalized Method of Moments [23]
together with an asymptotically tight convex relaxation.

The underlying principle behind COCA is the following
identity [14, 31]:

E

(
p

xix
T
i

xT
i [CTrue]

−1
xi

)
= CTrue, (6)

Indeed, Tyler’s estimator is just the sample based solution
that satisfies this identity. When there is an insufficient
number of samples and a constraint of the structure, such a
solution does not necessarily exist. Instead, the Generalized
Method of Moments [23] seeks an approximate solution to
the problem

min
C∈S1

∣∣∣∣∣
∣∣∣∣∣C− p

n

n∑
i=1

xix
T
i

xT
i C
−1xi

∣∣∣∣∣
∣∣∣∣∣ , (7)

where || · || is some norm and we ensure uniqueness by
defining

S1 = {M ∈ S|Tr (M) = 1}. (8)

Intuitively, this optimization tries to simultaneously solve
Tyler and project it on the prior structure. By choosing the
norm appropriately (with adaptive weights, e.g., [23, 32]),
an optimal solution to (7) would result in an asymptotically
consistent and efficient estimator. Unfortunately, the objec-
tive is non-convex and it is not clear how to find its global
solution in a tractable manner.

In what follows, we propose a convex relaxation of (7)
that allows a computationally efficient solution. First, let us
introduce the auxiliary variables di, i = 1, . . . , n:

min
C∈S1

∣∣∣∣∣
∣∣∣∣∣C− 1

n

n∑
i=1

dixix
T
i

∣∣∣∣∣
∣∣∣∣∣

subject to di =
p

xT
i C
−1xi

, i = 1 . . . n.

(9)

This problem is not convex due to the equality constraints.
We suggest to relax them to the inequalities:

min
C∈S1

∣∣∣∣∣
∣∣∣∣∣C− 1

n

n∑
i=1

dixix
T
i

∣∣∣∣∣
∣∣∣∣∣

subject to di ≤
p

xT
i C
−1xi

, i = 1 . . . n,

di ≥ 0, i = 1 . . . n.

(10)

This relaxed problem is a convex minimization. To see
this, it is instructive to use Schur’s complement formulas
and express the inequalities di ≤ p

xT
i C−1xi

, i = 1 . . . n as
convex linear matrix inequalities (LMI):

CCOCA = arg


min
C∈S1

∣∣∣∣∣
∣∣∣∣∣C− 1

n

n∑
i=1

dixix
T
i

∣∣∣∣∣
∣∣∣∣∣

subject to C � 1

p
dixix

T
i ,∀i = 1 . . . n,

di ≥ 0,∀i = 1 . . . n.
(11)

It can be efficiently computed by standard semi-definite
programming solvers, e.g., CVX, [29, 30].

The non-relaxed version of the COCA-estimator in (7)
can be considered optimal in many ways. The interesting
question is how tight is the relaxation. We now provide two
promising results on this tightness.

Theorem 1. In the unstructured case S = P(p) with n ≥ p,
COCA-estimator is unique up to a positive scaling factor and
coincides with Tyler’s estimator.

Proof. In fact we know that when n ≥ p (11) has at least
one solution which makes the target function be equal to
zero. It is the Tyler’s estimator itself satisfying

di =
p

xT
i C
−1xi

, i = 1 . . . n.

These equalities hold up to a scaling factor.
We now show that there are no more solutions to (11).

Indeed, assume there is an additional solution that attains 0
at the target function, that is C = 1

n

∑n
i=1 dixix

T
i . Multiply

each inequality di ≤ p
xT
i C−1xi

by the matrix xix
T
i for i =

1 . . . n and sum up to obtain

C =
1

n

n∑
i=1

dixix
T
i �

p

n

n∑
i=1

xix
T
i

xT
i C
−1xi

= f(C). (12)

The inequality (12) reads now as C � f(C). As stated
in the Corollary V.I from [13], this implies that C is the
fixed point of f : C = f(C) (actually this result was already
used by Maronna in [17], but it is not stated as a separate
result there), which is exactly the Tyler’s estimator (3), thus
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proving that this is the only solution to (11) up to a positive
scaling factor.

For a general convex set S the COCA-estimator is actually
consistent:

Theorem 2. In the structured case, COCA is an asymptoti-
cally consistent estimator of the true shape matrix CTrue ∈ S.

Proof. Due to space limitations, we defer this technical proof
to the journal paper. In brief, the idea is to show that the
inequality (12) hold asymptotically, as n→∞.

V. EXAMPLES AND APPLICATIONS

In this section we choose the norm in (11) and the norm
of the projector operator (5) to be the spectral norm. We we
investigate the performance benefits of the COCA-estimator
when the true shape matrix is Toeplitz and banded. We
compare the following estimators: CSample (2), CTyler (3),
CProj (5) and CCOCA (11). In CProj we project Tyler’s esti-
mator CProj(CTyler) when it exists and the sample covariance
otherwise.

For each number of samples n we generated 1000 sets of
independent, elliptically distributed 20-dimensional samples
and calculated the empirical MSE for all the estimators. The
samples were generated as Gaussian compound x =

√
τv,

where the random variable τ ∼ χ2 and the random vector v
was zero-mean normally distributed with covariance matrix
CTrue.

A. Toeplitz Covariance Matrix

The 20×20 Toeplitz shape matrix was obtained as CTrue =
FDFT , where F is the 20-dimensional DFT matrix and D
- diagonal matrix with eigenvalues 1, . . . , 20. The proof of
fact that such CTrue is circulant and, in particular, Toeplitz
can be found here [5]. This matrix appears to be complex
Hermitian, and all the theory developed above applies to this
case. You can see the numerical results in the picture.

B. Banded Covariance Matrix

For the banded covariance matrix we took a symmet-
ric matrix with the numbers 21, . . . , 40 on the diagonal,
1, . . . , 19 and 1, . . . , 18 on the first and second sub-diagonals
respectively.

C. Discussion and Conclusions

As we can see, the performance of the proposed COCA-
estimator is much better than that of the projection estimator.
The most important benefits of COCA-estimator is that it
is given as a convex program, thus admitting any convex
structure, and it exists when n < p, in which case many
other estimators do not exist or are rank deficient.

There are several ways of extending this result. First,
it can be extended to a general M-estimator and not only
the particular case of Tyler’s estimator. We will treat this
generalization in our future work. Secondly, it turns out
in the numerical runs that this estimator is almost always
better then Tyler’s estimator itself or its projection. We are
currently working on proving this conjectures.
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