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ABSTRACT

In this work, we study the problem of single-channel mixed
speech recognition using deep neural networks (DNNs). Using a
multi-style training strategy on artificially mixed speech data, we
investigate several different training setups that enable the DNN to
generalize to corresponding similar patterns in the test data. We also
introduce a WFST-based two-talker decoder to work with the trained
DNNs. Experiments on the 2006 speech separation and recogni-
tion challenge task demonstrate that the proposed DNN-based sys-
tem has remarkable noise robustness to the interference of a com-
peting speaker. The best setup of our proposed systems achieves an
overall WER of 19.7% which improves upon the results obtained by
the state-of-the-art IBM superhuman system by 1.9% absolute, with
fewer assumptions and lower computational complexity.

Index Terms— DNN, multi-talker ASR, WFST

1. INTRODUCTION

While significant progress has been made in improving the noise ro-
bustness of speech recognition systems, recognizing speech in the
presence of a competing talker remains one of the most challeng-
ing unsolved problems in the field. To study the specific case of
single-microphone speech recognition in the presence of compet-
ing talker, a monaural speech separation and recognition challenge
[1] was issued in 2006. It enabled researchers to apply a variety of
techniques on the same task and make comparisons between them.
Several types of solutions were proposed. Model based approaches
[2, 3, 4] use factorial GMM-HMM [5] to model the interaction be-
tween target and competing speech signals and their temporal dy-
namics, then the joint inference or decoding determined the two
most likely speech signals or spoken sentences given the observed
speech mixture. In computational auditory scene analysis (CASA)
and missing feature approaches [6, 7, 8], certain segmentation rules
operate on low-level features to estimate a time-frequency mask that
isolates the signal components that belong to the each speaker. This
mask is used either to reconstruct the signal or directly inform the de-
coding process. Some other approaches including [9] and [10] utilize
the non-negative matrix factorization (NMF) for the separation and
pitch-based enhancement. Among all the submissions to the chal-
lenge, the IBM superhuman system [2] performed the best and even
exceeded what human listeners could do on the challenge task (see
Table 2). Their system consists of three main components: a speaker
recognizer, a separation system, and a speech recognizer. The sepa-
ration system requires as input the speaker identities and signal gains
that are output from the speaker recognition system. In practice, it is
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usually necessary to enumerate several of the most probable speaker
combinations and run the whole system multiple times. This may
be impractical when the number of speakers is large. The separa-
tion system uses factorial GMM-HMM generative models with 256
Gaussians to model the acoustic space for each speaker. While this
was sufficient for the small vocabulary in the challenge task, it is a
very primitive model for a large vocabulary task. However, with a
larger number of Gaussians, performing inference on the factorial
GMM-HMM becomes computationally impractical. Moreover, the
system assumes the availability of speaker-dependent training data
and a closed set of speakers between training and test.

Recently, acoustic models based on deep neural networks
(DNNs) [11] have shown great success on large vocabulary tasks
[12]. However, few, if any, previous work has explored how DNNs
could be used in the multi-talker speech recognition scenario. High-
resolution features are typically favored by speech separation sys-
tem, while the fact that a conventional GMM-HMM ASR system
is incapable of compactly modeling the high-resolution features
usually forces researchers to perform speech separation and recog-
nition separately. However, DNN-based systems have been shown to
work significantly better on spectral-domain features than cepstral-
domain features [13], and have shown outstanding robustness to
speaker variation and environment distortions [14, 15]. In this work,
we aim to build a unified DNN-based system, which can simultane-
ously separate and recognize two-talker speech in a manner that is
more likely to scale up to a larger task. We propose several methods
for co-channel speech recognition that combine multi-style training
with different objective functions defined specifically for the multi-
tasker task. The phonetic probabilities output by the DNNs will
then be decoded by a WFST-based decoder modified to operate on
multi-talker speech. Experiments on the 2006 speech separation and
recognition challenge data demonstrate the proposed DNN based
system has remarkable noise robustness to the interference of com-
peting talker. The best setup of our systems achieves 19.7% overall
WER, which is 1.9% absolute improvement over the state-of-the-art
IBM system with less complexity and fewer assumptions.

The remainder of this paper is organized as follows. In Section
2, we describe our multi-style DNN training and the different multi-
talker objective functions used to train the networks. The WFST-
based joint decoder is introduced in Section 3. We report experi-
mental results in Section 4 and summarize our work in Section 5.

2. DNN MULTI-STYLE TRAINING WITH MIXED SPEECH

Although a DNN-based acoustic model has proven to be more ro-
bust to environmental perturbations, it was also shown in [14] that
the robustness holds well only for the input features with modest
distortions beyond what was observed in the training data. When
there exist severe distortions between training and test samples, it
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System/Method  IBM superhuman Human  Next best
WER 21.6% 22.3% 34.2%

Table 1. Overall keywords WERs of three systems/methods on the 2006
challenge task. IBM superhuman: Hershey et al. [2] ; Human: human listen-
ers; Next best: the system by Viranen [3].

is essential for DNNs to see examples of representative variations
during training in order to generalize to the severely corrupted test
samples. Since that we are dealing with a challenging task where
the speech signal from the target speaker is mixed with a compet-
ing one, a DNN-based model will generalize poorly if it is trained
only on single-speaker speech, as will be shown in Section 4. One
way to circumvent this issue is using a multi-style training strategy
[16] in which training data is synthesized to be representative of the
speech expected to be observed at test time. In our case, this means
corrupting the clean single-talker speech database with samples of
competing speech from other talkers at various levels and then train-
ing the DNNs with these created multi-condition waveforms. In the
next sections, we describe how this multi-condition data can be used
to create networks that can separate multi-talker speech.

2.1. High and Low Energy Signal Models

In each mixed-speech utterance, we assume that one signal is the
target speech and one is the interference. The labeling is somewhat
arbitrary as the system will decode both signals. The first approach
assumes that one signal has higher average energy than the other.
Under this assumption, we can identify the target speech as either
the higher energy signal (positive SNR) or the lower energy signal
(negative SNR). Thus in our first system, two DNNs are used: given
a mixed-speech input, one network is trained to recognize the higher
energy speech signal while the other one is trained to recognize the
low energy speech signal. Suppose we are given a clean training
dataset X', we first perform energy normalization so that each speech
utterance in the data set has the same power level. To simulate the
acoustical environments where the target speech signal has higher
average energy or lower average energy, we randomly choose an-
other signal from the training set, scale its amplitude appropriately
and mix it with the target speech. Denote by X, X', the two multi-
condition datasets created as described. For the high energy target
speaker, we train the DNN models with the loss function,

Low(0) =— Y logp(sy|zs;0), ()

Tt E€EXH

where s? is the reference senone label at t*" frame. Note that the ref-
erence senone labels comes from the alignments on the uncorrupted
data. This was critical to obtaining good performance in our experi-
ments. Similarly, the DNN models for the low energy target speaker
can be trained on the dataset X’7,. With the two created dataset Xz,
and Xy, we can also train the DNNs as denoisers using the mini-
mum square error (MSE) loss function,

Lase () = Z |9(xt;0) — yt|27 yr € X, 2
T EXH

where y; € X is the corresponding clean speech features and
§(x¢; 0) is the estimation of the uncorrupted inputs using the deep
denoiser. Similarly, the denoiser for the low energy target speaker
can be trained on the dataset X7,.

2.2. High and Low Pitch Signal Models

One potential issue with the above training strategy based on high
and low energy speech signals is that the trained models may per-

form poorly when mixed signals have similar average energy levels,
i.e. near 0dB SNR. The reason is that the problem is ill-defined in
this region since one cannot reliably label one signal as the higher
or lower energy signal. Since it is far less likely that the two speak-
ers will speak with the same pitch, we propose another approach in
which DNNss are trained to recognize the speech with the higher or
lower pitch. In this case, we only need to create a single training set
X'p from original clean dataset X by randomly choosing an interfer-
ing speech signal and mixing it with the target speech signal. The
training also requires a pitch estimate for both the target and inter-
fering speech signals which will be used to select appropriate labels
for DNN training. The loss function for training the DNN for the
high pitch speech signals is thus,

Lo(0) == > logp(s;" |2:;0), 3)
TtEXp
where S?P is the reference senone label obtained from the align-

ments on the speech signal with the higher average pitch. Similarly,
a DNN for the lower pitch speech signals can be trained with the
senone alignments of the speech signal with the lower average pitch.

2.3. Instantaneous High and Low Energy Signal Models

Finally, we can also train the DNNs based on the instantaneous en-
ergy in each frame rather than the average energy of the utterance.
Even an utterance with an average energy of 0 dB will have non-zero
instantaneous SNR values in each frame, this means there is no am-
biguity in the labeling. We only need to create one training set X’
by mixing speech signals and computing the instantaneous frame en-
ergies in the target and interfering signal. The loss function for the
instantaneous high energy signal is given by,

Lop(0) =— > logp(si|z:;0), )

Tt EXT

where S;H corresponds to the senone label from the signal source
which contains higher energy at frame ¢. In this scenario, since we
are using a frame-based energy rather than an utterance-based energy
as the criterion for separation, there is uncertainty as to which out-
put corresponds to the target or interferer from frame to frame. For
example, the target speaker can have higher energy in one frame and
lower energy in the next frame. We will address this in the decoder
described in the next section.

3. JOINT DECODING WITH DNN MODELS

For the DNNs based on instantaneous energy, we need to determine
which of the two DNN outputs belongs to which speaker at each
frame. To do so, we introduce a joint decoder that can take the pos-
terior probability estimates from the instantaneous high-energy and
low-energy DNNSs to jointly find best two state sequences, one for
each speaker. The standard recipe for creating the decoding graph in
the WFEST framework can be written as,

HCLG = min(det(H o C o Lo G)), (%)

where H, C, L and G represent the HMM structure, phonetic
context-dependency, lexicon and grammar respectively, and o is
WEST composition. The input labels of the HCLG are the iden-
tifiers of context-dependent HMM states (senone labels), and the
output labels represent words. Denote by 8 and 6" instantaneous
high and low energy signal DNN models trained as described in
Section 2.3. The task of the joint decoder is to find best two state
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sequence in the 2-D joint state space such that the sum of each
state-sequence log-likelihood is maximized,

(s",s*) = p(z1.r|s'; 07, 0%) p(z1.0[s%; 0, 0%).

(6)
The key part of the proposed decoding algorithm is joint token pass-
ing on the two HCLG decoding graphs. The main difference in
token passing between joint decoding and conventional decoding is
that now each token is associated with two states rather than one in
the decoding graph. Figure 1 shows a toy example to illustrate the
joint token passing process: suppose the token for the first speaker
is at state 1, and the token associated with the second speaker is at
state 2. For the outgoing arcs with non-¢ input labels (those arcs that
consume acoustic frames), the expanded arcs will be the Cartesian
product between the two outgoing arc sets. The graph cost of each
expanded arc will be the semiring multiplication of the two. The
acoustic cost of each expanded arc is computed using the senone
hypotheses from the two DNNs for the instantaneous high and low
energy. Because we need to consider both cases where either one of
the two sources has the higher energy, the acoustic cost is given by
the combination with higher likelihood,

C = max{p(z:|s';0") - p(ze|s*; "),
pais';0%) - p(ad|s®; 0™)}. @)

With the equation above, we can also tell which speaker has higher

argmax
(s1,s2)e{sl xs2}

Fig. 1. A toy example illustrating the joint token passing on the two WFST
graph: s!, s? denote state space corresponds to one of two speakers; (s, s2)
represent the joint state space.

energy in the corresponding signal at certain frame ¢ along this
search path. For the arcs with e input labels, the expansion process
is bit tricky. As the e arcs are not consuming acoustic frames, to
guarantee the synchronization of the tokens on two decoding graphs,
a new joint state for current frame has to be created (see the state
(3,2) in the Fig.1).

One potential issue of our joint decoder is that we allow free en-
ergy switching frame by frame while decoding the whole utterance.
Yet, we know that in practice, the energy switching should not typi-
cally occur too frequently. This issue can be overcome by introduce a
constant penalty in certain searching path when the louder signal has
changed from last frame. Alternatively, we can estimate the proba-
bility that a certain frame is the energy switching point and let the
value of the penalty adaptively changed with it. Since we created the
training set by mixing the speech signals, the energy of each original
speech frame is available. We can use it to train a DNN to predict
whether the energy switch point occurs at certain frame. If we let 6°
represent the models we trained to detect the energy switching point,
the adaptive penalty on energy switching is given by,

P = —a-logp(y:|ze; 6°). (8)

Systems Conditions
Clean 6dB 3dB 0dB -3dB -6dB -9dB
GMM 40 38,5 547 705 823 893 942
DNN ‘ 0.7 325 488 663 784 863 91.8

Table 2. WERs (%) of baseline GMM-HMM and DNN-HMM systems

4. EXPERIMENTS

4.1. The Challenge Task and Scoring Procedure

The main task of 2006 monaural speech separation and recognition
challenge is to recognize the keywords (numbers and letters) from
the speech of a target speaker in the presence of another competing
speaker using a single microphone. The speech data of the challenge
task is drawn from GRID corpus [17]. The training set contains
17,000 clean speech utterances from 34 difference speakers (500 ut-
terances for each speaker). The evaluation set includes 4,200 mixed
speech utterances in 7 conditions, clean, 6dB, 3dB, 0dB, -3dB, -6dB,
-9dB target-to-mask ratio (TMR) and the development set contains
1,800 mixed speech utterances in 6 conditions (no clean condition).
The fixed grammar contains six parts: command, color, preposition,
letter (with W excluded), number, and adverb, e.g. “place white at
L 3 now”. During the test phase, the speaker who utters the color
’white’ is treated as the target speaker. The evaluation metric is the
WER on letters and numbers spoken by the target speaker. Note
that the WER on all words will be much lower, and unless otherwise
specified, all reported WERs in the following experiments are the
ones evaluated only on letters and numbers.

4.2. Baseline System

The baseline system is built using a DNN trained on the original
training set consisting of 17,000 clean speech utterances. We first
train a GMM-HMM system using 39-dimension MFCCs features
with 271 distinct senones. Then we use 64 dimension log mel-
filterbank as features and context window of 9 frames to train the
DNN. The DNN has 7 hidden layers with 1024 hidden units at each
layer and the 271-dimensional softmax output layer, corresponding
to the senones of the GMM-HMM system. The following training
scheme will be used through all the DNN experiments: the parame-
ter initialization is done using layer by layer using generative pre-
training [18] following by discriminative pre-training [19]. Then
the network is discriminatively trained using backpropagation. The
mini-batch size is set to 256 and the initial learning rate is set to
0.008. After each training epoch, we validate the frame accuracy on
the development set, if the improvement is less than 0.5%, we shrink
the learning rate by the factor of 0.5. The training process is stopped
after the frame accuracy improvement is less than 0.1%. The WERs
of the baseline GMM-HMM and DNN-HMM system are shown in
Table 2. As can be seen, the DNN-HMM system trained only on
clean data performs poorly in all SNR conditions except the clean
condition, confirming the necessity of DNN multi-style training.

4.3. Multi-style Trained DNN Systems

To investigate the use of multi-style training for the high and low
energy signal models, we generated two mixed-speech training
datasets. The high energy training set, which we refer to as Set
I, was created as follows: for each clean utterance, we randomly
choose three other utterances and mixed them with the target clean
utterance under 4 conditions, clean, 6dB, 3dB, 0dB. (17,000 x 12);
II. The low energy training set, referred to as Set II, was created in a
similar manner but the mixing was done under 5 conditions, clean,
and TMRs of 0dB, -3dB, -6dB, -9dB. (17,000 x 15). Then we use
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Conditions

Systems  |-eqs—480dB _-3dB_-6dB 9dB || 'O
DNN 325 4388 663 784 863 018 || 674
DNNI || 45 168 568 -

DNNII - - 526 336 184 174 -
IBM [2] 154 17.8 22,7 20.8 22.1 309 | 21.6
DNNI+I || 45 169 498 39.8 21.7 19.6 || 254

Table 3. WERs (%) of the DNN systems for high and low energy signals

Systems Conditions
6dB 3dB 0dB
Denoiser I + DNN 16.8 322 659
Denoiser I + DNN (retrained) || 6.3 17.3 56.3
DNN I 45 168 56.8

Table 4. WERs (%) of deep denoisers for high and low energy signals

these two training sets to train two DNN models, DNN I and II,
for high and low energy signals respectively, and listed the results
in Table 3. From the table, we can see the results are surprisingly
good, especially in the cases where two mixing signals have large
energy level difference, i.e. 6dB, -6dB, -9dB. By combining the
results from DNN I and II systems using the rule that the target
speaker always utters the color white, the combined DNN I+II sys-
tem achieves 25.4% WER compared to 67.4% which obtained with
the DNN trained only on clean data. Then we experimented with
the multi-style trained deep denoiser. With the same training set I,
we train a DNN as a front-end denoiser as described in Section 2.1.
With trained deep denoiser, we try two different setups: the first one
we directly feed denoised features to the DNN trained on the clean
data; in the second setup, we retrained another DNN on the denoised
data and conduct the experiments. We list the results of both setups
in the Table 4. From the above experiments, there are two note-
worthy points. First, the system with the DNN trained to predict
senone labels seems slightly better than the one with a trained deep
denoiser followed by another retrained DNN. This implies that DNN
is capable learning robust representations automatically, there may
be no need to extract hand-crafted features in the front-end. The
combined system DNN I+II is still not good as the state-of-the-art
IBM superhuman system. The main reason is that the system per-
forms very poorly in the cases where two mixing signals have very
close energy level, i.e. 0dB, -3dB. This coincides with our concerns
discussed earlier. Specifically, the multi-style training strategy for
the high and low energy signals has the potential issue of assigning
conflicting labels during training.

For the high and low pitch signals models, we first estimate the
pitch for each speaker from the clean training set. Then we combine
the Train Set I and Train Set II to form Set III (17,000 x 24) to
train two DNNs for high and low pitch signals respectively. When
training the DNNs for the high pitch signals, we assign the label
from the alignments on clean speech utterances corresponding to the
high pitch talker; When training the DNNs for the low pitch signals,
we assign the label from the alignments corresponding to the low
pitch talker. With the two trained DNN models, we do the decoding
independently as before and combine the decoding results using the
rules that the target speaker always utters the color white. We list the
WERs in Table 5. As can be seen, the system with the high and low
pitch signal models performs better than the one with the high and
low energy models in the OdB case, but worse in the other cases.

4.4. DNN System with Joint Decoder

Finally, we use training set III to train two DNN models for instanta-
neous high and low energy signals as described in Section 2.3. With
these two trained models, we perform a joint decoding as described

Conditions
Systems ‘ 6dB 3dB_0dB_3dB_6dB 9dB [ 'O

DNNI+II‘ 45 169 498 39.8 21.7 19.6 || 254

DNN III 145 22.1 30.8 419 528 59.6 || 369
Table 5. WERs (%) of the DNN systems for high and low pitch signals

Conditions
Systems 6dB 3dB 0dB 3d8 6aB —9aB || VO
DNN 325 488 663 7784 863 9018 674
IBM [2] 154 178 227 208 221 309 || 216
DNN I+ 45 169 498 398 217 196 || 254

Joint Decoder 183 19.8 193 213 232 274 | 215
Joint Decoder I || 16.1 18.7 20.5 19.6 23.6 26.8 || 209
Joint Decoder IT || 16.5 17.1 199 18.8 225 253 || 20.0
Combined 16.0 16.6 197 18.8 230 24.1 || 19.7

Table 6. WERs (%) of the DNN systems with the joint decoders.

in Section 3. The results of this Joint Decoder approach are shown
in Table 6. The last two systems correspond to the cases where we
introduce the energy switching penalties. The Joint Decoder I is the
system with the constant energy switching penalty and Joint Decoder
I is the system with adaptive switching penalty. To get the value of
the energy switching penalties as defined in (8), we trained a DNN
to estimate an energy switching probability for each frame.

4.5. System Combination

From Table 6, we can see that the DNN I+II system performs well in
the cases where two mixing speech signals have large energy level
difference, i.e. 6dB, -6dB, -9dB, while the Joint Decoder II system
performs well in the cases where two mixing signals have similar
energy level. This motivates us to do the system combination ac-
cording to the energy difference between the two signals. To get
energy level difference between two mixing signals, we use the deep
denoisers for the high and low energy signals. The mixed signal is
input to the two deep denoisers and the two resultant output signals
will be used to estimate the high and low energy signals. Using these
separated signals, we can calculate their energy ratio to approximate
the energy difference of two original signals. We first tune and ob-
tain a optimal threshold for the energy ratio on the development set,
and use it for the system combination, i.e. if the energy ratio of two
separated signals from the denoisers is higher than the threshold, we
use system DNN I+II to decode the test utterance, otherwise the sys-
tem Joint Decoder II will be used. The results are listed in Table 6.

5. CONCLUSIONS

In this work, we investigate DNN-based systems for single-channel
mixed speech recognition by using multi-style training strategy. We
also introduce a WFST-based joint decoder to work with the trained
DNNs. Experiments on the 2006 speech separation and recognition
challenge data demonstrate that the proposed DNN based system
has remarkable noise robustness to the interference of competing
speaker. The best setup of our proposed systems achieves 19.7%
overall WER which improves upon the results obtained by the IBM
superhuman system by 1.9% absolute, with making fewer assump-
tions and lower computational complexity.
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