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ABSTRACT

This paper proposes a lattice-based sequential discriminative train-
ing method to extract more discriminative bottleneck features. In
our method, the bottleneck neural network is first trained with cross
entropy criteria, and then only the weights of bottleneck layer are
retrained with sequential criteria. If the outputs of the layer be-
fore bottleneck are treated as the raw features, the new method is
an equivalent to a linear feature transformation algorithm. This lin-
earity makes the optimization much easier than updating the whole
neural network. Just like the fMPE and RDLT, the neural network
is retrained with batch mode gradient descent, making the training
to be easily implemented in parallel. Meanwhile, batch mode op-
timization can naturally deal with the indirect gradient to make the
optimization more precise. Experimental results on a Mandarin tran-
scription task and the Switchboard task have shown the effective-
ness of the proposed method with the CER decreases from 12.2% to
11.3% and the WER from 16.1% to 15.0%,respectively.

Index Terms— speech recognition, bottleneck features, neural
networks, discriminative training, sequence training

1. INTRODUCTION

In the past 30 years, the hidden Markov models (HMMs) and
Gaussian mixture models(GMMs) play a major role in the auto-
matic speech recognition(ASR). Traditionally, GMMs are used to
model the output distributions of tied-states, and the parameters
of GMMs are trained with the EM algorithm. During the past
decade, discriminative training techniques have brought significant
improvement to the estimation of GMM-HMMs. Discriminative
training can be applied on model space such as maximum mutual
information(MMI)[1], minimum classification error(MCE)[2, 3],and
minimum phone error(MPE)[4]. Alternatively, discriminative train-
ing can also be applied on feature space such as fMPE[5], fbMMI[6],
NN-fMMI [7] and RDLT[8]. In fMPE, the acoustic features are pro-
jected into high dimensional posterior vectors by a trained GMM,
and then be projected into a lower dimensional space with a linear
transformation matrix in order to correct some predefined features.

Recently, with the successful application of deep neural network
(DNN) on speech recognition [9, 10], the performance of ASR is
greatly improved. DNN parameters (weights and biases) are ob-
tained through two steps: the layer-wise pre-training[11, 12, 13] and
the back propagation based on a cross entropy criterion. Similar
to discriminative training techniques in GMM-HMMs, sequence-
discriminative training [14, 15, 16] for neural networks has been

proposed. After sequence-discriminative training, the recognition
accuracy can be further improved.

Another important application of neural networks is discrimina-
tive feature extraction through bottleneck(BN) features [17, 18, 19,
20]. Bottleneck features are usually extracted as follows: At first,
a multi-layer neural network with a narrow middle layer is trained
with cross entropy criterion. Then in feature extraction procedure,
the outputs of the BN layer are treated as the acoustic features. Af-
ter the BN features are extracted, traditional GMM/HMMs are built
with the conventional training paradigm.

In [21], a more targeted manner is proposed to train bottleneck
features with sequential criterion. Lattice based MMI criterion is uti-
lized to refine the BN feature extractor. The objective function is cal-
culated with the GMM/HMM models trained from the BN feature.
In that paper, the parameters of the GMM/HMM are kept unchang-
ing during the training process of BN network. After training, new
BN features are extracted and then the GMM/HMM acoustic models
are re-estimated. It’s easy to see that directly optimizing the whole
neural network is a complex non-convex problem. So the author in
[21] adopt stochastic gradient descent (SGD) to train the network.
SGD algorithm is hard to parallel while Hessian-free [16] can solve
this problem to some extent. However, both SGD and Hessian-free
are difficult to consider the indirect gradient.

Considering all of these problems, this paper proposes a new
method to train the BN feature extractor with GMM/HMM se-
quential criterion. First, we suggest to update only the last layer’s
weights, which makes the optimization like a generalized linear
feature transformation problem. This assumption makes the op-
timization much simpler. Then, just like the fMPE or the RDLT
method, we optimize the linear transformation with batch mode
gradient descent. In batch mode, we can calculate the direct and
the indirect gradient, and this process makes the optimization more
precise. During the training process, the parameters of the BN
network and GMM are optimized jointly. Finally, we use model
space discriminative training to refine the parameters of the GMM
components. Experimental results show significant superiority of
the proposed methods over the regular BN feature extractor. In
addition, the experimental results on switchboard task demonstrate
the indirect gradient is very important.

The paper is organized as follows: in section 2 we describe
the method of discriminative bottleneck feature extractor with linear
transformation; in section 3 we describe the overall training recipe;
in section 4 we conduct the experiments and analyze experimental
results, and in section 5 we present the conclusions.
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Fig. 1. Baseline Bottleneck Neural Network.

2. DISCRIMINATIVE BOTTLENECK FEATURE
EXTRACTOR WITH LINEAR TRANSFORMATION

2.1. A overview of bottleneck neural network

Figure 1 is our baseline bottleneck neural network .The architecture
of this network is similar as described in [17, 22]. This network is a
specially structured DNN, which includes a small bottleneck layer in
the middle to control information flowing from the input layer to the
output layer. The inputs to this network are standard acoustic fea-
tures, such as MFCC, PLP. The output layer corresponds to senone
activations. After training the bottleneck neural network, we get the
BN feature extractor as shown in Figure2. The relationship of the
parameters in figure 2 is

v1 = W1x, h1 = σ(v1)

v2 = W2h1, h2 = σ(v2)

y = h3 = v3 = W3h2

(1)

Where x denotes the standard acoustic features and y denotes linear
output bottleneck feature. W = {W1,W2,W3} are the weights of
BN feature extractor. The size of Wi is ni × (ni−1 + 1) where ni
denotes the number of units of layer i. σ is the sigmoid function.

2.2. Discriminative training of bottleneck neural network with
linear transformation

In this paper, we will only update the weights of W3 (red part in
figure2) discriminatively to optimize the BN feature extractor while
remaining W1 and W2 to be fixed. From formula (1), the acoustic
features x will be projected to h2 though the weights W1 and W2,
and we view h2 as the raw features. Since y = W3h2, we treat
W3 in the BN feature extractor as a linear transformation matrix
M . We will train this matrix based on MPE criterion. The training
procession bears similarity to work described in [5]. Comparing with
fMPE, the transformation is more simple since the dimension of h2

is far lower than the high-dimensional posterior features in fMPE.

2.3. The objective function

The objective function that we use in this paper is given by the mini-
mum phone error (MPE) [4] between the bottleneck features yr and
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Fig. 2. BN feature extractor.

the sequence of reference words wr:

FMPE(λ) =
∑
r

∑
wi∈wr

p(wi|yr)A(wi, wr)

≈
∑
r

∑
wi∈wr

pλ(yr|wi)p(wi)∑
wk∈wr

pλ(yr|wk)p(wk)
A(wi, wr)

(2)

where p(wi|yr) is defined as the posterior sentence probability of
the hypothesized sentence wr , λ is the model parameters and yr is
the r’th file of bottleneck features. The function A(wi, wr) is the
raw phone accuracy of wi given wr .

As (2) is difficult to optimize directly, we usually optimize the
weak-sense auxiliary function to maximize (2).

gMPE(λ, λ̄) =∑
r

∑
q∈Wr

lat

t=eq∑
t=sq

∑
m

γrMPE
q γrqm(t)logN(yr(t), µm, σm)

(3)

Where γrMPE
q denotes the weight of minimum phone error of the

q’th phone arc and γrqm(t) denotes the Gaussian occupation proba-
bility within the phone arc at time t.

2.4. Optimization of the linear transformations

The matrix is trained using linear method with gradient algorithm.
The update on each iteration is:

Mij := Mij + η
∂F
∂Mij

(4)

Where η is the learning rate, and ∂F
∂Mij

is the differential of object
function to Mij .

∂F
∂Mij

=

T∑
t=1

∂F
∂yti

htj (5)

Where ∂F
∂yti

corresponds to the differential of the objective function
w.r.t. the i’th dimension of BN features at time t. T corresponds
to the total frames of all the training data. As is mentioned above,
we only update red part of BN feature extractor in figure 2, and this
can be treated as linear transform matrix update. We can use all
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the training data as a big batch rather than small mini-batches to
calculate the differentials of the parameters, and this is particularly
suited for distributed computing.

The differential ∂F
∂yti

includes a direct and an indirect component
because the model parameters are also a function of the transformed
feature vectors.

∂F(M,M)

∂yt,i
=
∂F(yt,i,M)

∂yt,i︸ ︷︷ ︸+
∂F(yt,i,M)

∂λ

∂λ

∂yt,i︸ ︷︷ ︸
direct indirect

(6)

The direct derivative is

∂F(yt,i,M)

∂yt,i
=

∑
q∈Wr

lat

∑
m

γMPE
q γqm(t)

µm,i − yt,i
σ2
m,i

(7)

where µm,i, σ2
m,i represent the Gaussian mean and variance, which

are assumed to be estimated with maximum likelihood on the BN
features.

The indirect derivative is obtained by differentiating the object
function with respect to µm,i and σ2

m,i.

∂F(yt,i,M)

∂λ

∂λ

∂yt,i
=

∑
m

∂F(yt,i,M)

∂µm,i

∂µm,i
∂yt,i

+
∑
m

∂F(yt,i,M)

∂σ2
m,i

∂σ2
m,i

∂yt,i

(8)

The calculation of (8) is similar as described in [5] and will not be
detailed here. By using Eq.(6), (7) and (8), we can optimize M with
Eq.(5).

3. OVERALL TRAINING RECIPE

Overall training recipe is as follows:

1. Obtain frame-level labels of the training corpus through a
standard GMM-HMM system.

2. Train a BN neural network using cross entropy criterion.

3. Train a BN feature based GMM-HMM system as the base-
line.

4. Optimize BN feature extractor with the proposed method.

5. Train the GMM-HMM system using model space MPE crite-
rion.

In step 1 the acoustic model (AM) of the GMM-HMM system starts
with some iterations of ML estimation, and then is refined by sev-
eral iterations of model space MPE training. The model in step 1 is
adopted to get frame-level labels of all the training data. Then we
train a standard BN neural network based on cross-entropy criterion
in step 2. In step3, the BN feature extractor is used to transform
the acoustic features to BN features, and the BN features are used to
replace the acoustic features in step 1 to train another GMM-HMM
system. In step 4 we refine the BN feature extractor with the pro-
posed method. Just like fMPE, each training iteration involves three
passes over the data: one to accumulate normal MPE statistics, a
second to accumulate statistics of optimizing BN feature extractor
and update the weights based on gradient algorithm, and a third pass
to update the GMM-HMM with the newly transformed data. In step
5, model space MPE training is used to optimize the GMM-HMM
system in step 4.

4. EXPERIMENTS

In this paper, we have evaluated the proposed method on two LVCSR
tasks, namely the 70-hours Mandarin transcription task and the
Switchboard task.

4.1. Mandarin transcription task

For the Mandarin transcription task, the training set contains 76,858
utterances (about 70 hours) from 1,539 speakers. The test set con-
tains 3,720 utterances from 50 other speakers, about 3-hour speech.
All speech are very clean. Evaluation is measured in terms of char-
acter error rate (CER).

4.1.1. Baseline Systems

First of all, we build the baseline system based on the standard tied-
state cross-word tri-phone GMM/HMMs. We use the regular 43-
dimension features, including 39-dimension MFCC features (static,
first and second derivatives) and 4-dimension pitch features. The
features are pre-processed with cepstral mean normalization (CMN).
The baseline models are first trained based on maximum likelihood
estimation (MLE), including 3,978 tied states and 30 Gaussian com-
ponents per state. Then model space discriminative training is per-
formed using MPE criterion. In the first row of Table 1, we give
recognition performance of the MFCC-based GMM/HMM.

Next, a 5-hidden-layer bottleneck neural network is trained us-
ing the standard procedure. The bottleneck layer in the middle con-
tains 43 hidden nodes, and each other hidden layer has 2048 nodes.
The BN neural networks’ inputs are long concatenated feature vec-
tors, stacking from all consecutive frames within a context window
of 11 frames. We use RBM pre-training to initialize this network
and train it in mini-batches of 1024 frames based on cross-entropy
error criterion. After training, we use the BN feature extractor to
extract BN features and train another GMM/HMM. The recognition
performance of BN-based GMM/HMM is listed in the second row of
Table 1. We can see that BN-based GMM/HMM yields a significant
performance improvement over the MFCC-based GMM-HMM. The
baseline results are same as reported in [22].

4.1.2. Lattice based system

Following the training recipe described in section 3, we get the opti-
mized BN feature extractor and GMM-HMM. The recognition per-
formance is listed in the last row of Table 1. It can be seen that
the MLE-trained GMM-HMMs using optimized BN features give
an 8.8% relative error reduction over baseline BN features. After
MPE discriminative training, it yields a 7.4% relative error reduc-
tion over the same MPE-trained GMM-HMM using the baseline BN
features.

Table 1. Performance comparison (CER in %) using different fea-
tures in Mandarin task.

MLE MPE
MFCC 18.2 16.7

BN 13.6 12.2
LAT-BN 12.4 11.3
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Table 2. Performance comparison (WER in %) using different fea-
tures in Switchboard task.

MLE MPE
PLP 28.7 24.7
BN 18.3 16.1

LAT-BN 16.3 15.0

4.2. Switchboard task

For the Switchboard task, the training data consists of 300-hour
Switchboard-I training set and 20-hour Call Home English data.
We use the switchboard part of NIST 2000 Hub5 evaluation sets,
denoted as Hub5e00-swb, to evaluate recognition performance.

4.2.1. Baseline Systems

The baseline system is a standard tied-state cross-word triphone
GMM/HMMs trained with both MLE and MPE criterion using 39-
dimension PLP features (static, first and second derivatives) that
are pre-processed with cepstral mean and variance normalization
(CMVN) per conversation side. GMM/HMM consists of 8,991 tied
states and 40 Gaussians per state. In decoding, we use a tri-gram
LM trained with all training transcripts. Next, we train a BN neural
network with 429, 2048, 2048, 39, 2048, 2048, 8991 units in each
layer, and train a GMM/HMM using 39-dimension BN features.
The middle two rows of table 2 list the WERs of these baseline
GMM/HMMs.

4.2.2. Lattice based system

In the last row of Table 2, we list the WERs of the lattice based
system. As we can see, the performance improvements are very sig-
nificant comparing with the baseline BN GMM/HMM. The relative
word error reductions are 10.9% and 6.8% for the MLE and MPE
systems, respectively.

4.3. performance of keeping GMM model fixed

Furthermore, we conduct experiments on the switchboard task to
evaluate the importance of indirect part of formula (6). While ignor-
ing the indirect part, the parameters of GMM model are fixed during
the training process. It is similar to the method of [21], the differ-
ence is that we only update the weights in the bottleneck layer with
a big batch rather than update the whole network with mini-batches.
The comparison of recognition performance is given in Table 3. Re-
sults in the first row are copied from the last row of table 2, which
means the GMM model is updated in the optimization procedure.
The results of keeping GMM model fixed are listed in the last row.

The numbers shown in brackets in table 3 correspond to the de-
coding results while using BN features in combination with the ML
trained AM of the baseline BN system. ML re-training the AM us-
ing BN features results in a slight increase in WER. Despite this
increase in WER, the subsequent discriminative AM training bene-
fits from such a re-training. This phenomenon is same as the results
described in [21]. Results show that the performance of the LAT-
BN without updating model parameters is slightly better than the
baseline BN features, but is significant worse than the LAT-BN with
updating GMM model. This results shown that the indirect gradient
is an imperative part of formula (6), and it’s not wise to ignore this
part.

Table 3. Performance (WER in %) comparison of different LAT-BN
in Switchboard task.

LAT-BN MLE MPE
update GMM model 16.3 15.0
GMM model fixed 17.9(17.2) 15.7

5. CONCLUSION

In this paper, we propose a method to optimize bottleneck feature ex-
tractor for GMM-HMM based speech recognition. Our approach al-
lows to train BN feature extractor using lattice-based sequence clas-
sification criteria. Different from the traditional training strategies of
BN neural networks, this method is suited for distributed computing.
More importantly, we have demonstrated that our approach can yield
significant performance gain compared to regular BN feature extrac-
tor in all evaluated speech recognition tasks. As we only update the
weights of BN layer in this paper, future work will address ways of
updating all layer weights in the BN feature extractor.
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