
MULTILINGUAL SHIFTING DEEP BOTTLENECK FEATURES FOR LOW-RESOURCE ASR

Quoc Bao Nguyen, Jonas Gehring, Markus Müller, Sebastian Stüker and Alex Waibel
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ABSTRACT

In this work, we propose a deep bottleneck feature architec-
ture that is able to leverage data from multiple languages. We
also show that tonal features are helpful for non-tonal lan-
guages. Evaluations are performed on a low-resource conver-
sational telephone speech transcription task in Bengali, while
additional data for DBNF training is provided in Assamese,
Pashto, Tagalog, Turkish, and Vietnamese. We obtain relative
reductions of up to 17.3% and 9.4% WER over mono-lingual
GMMs and DBNFs, respectively.

Index Terms— Deep Neural Networks, Multilingual
Deep bottleneck features, Low-Resource ASR

1. INTRODUCTION

The models of a classical automatic speech recognition sys-
tem are usually trained on data from one language only. As a
consequence, the resulting recognition system is only able to
recognize speech from that language. Further, large amounts
of training data from the target language of the recognition
system need to be available in order to estimate the model
parameters robustly. In multilingual speech recognition sys-
tems, the models of the system (most prominently the acous-
tic model) are trained on data from multiple languages [1].
This approach has two advantages. First, the resulting model
is in principle capable of recognizing speech coming from
any of the languages present in the training data. Second, re-
search has shown that multilingual acoustic models are well
suited for initializing acoustic models for new languages, and
reducing the amount of training material needed for a new,
previously unseen target language [1]. The use of multilin-
gual models in acoustic modeling is especially of use when
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only small amounts of training data in the target language are
available, and the available time for training the new model is
limited. Multilingual models can be trained in advance before
the need of a recognition system in a new language arises, and
can then reduce the training time in that new language.

In the IARPA sponsored Babel1 program, we face exactly
this challenge. Here, the task is to create keyword search sys-
tems in new languages with only 10 hours or less of available
training data. Also, towards the end of the project, the train-
ing time allowed for creating a new system will be reduced to
one week. Modern keyword search systems often make use
of the result of a large vocabulary continuous speech recogni-
tion (LVCSR) system for performing the task. Therefore, in
Babel we need to be able to build speech recognition systems
for new languages with very little training data in a very short
time frame.

Recently, the use of multilingual modeling techniques has
been extended from the acoustic model to the pre-processing
component of a speech recognition system. With the advent
of deep bottleneck features (DBNFs) which make use of deep
neural networks (DNNs) the feature extraction aspect of a
recognition system now also contains a component in need
of training, normally on data from the target language of the
recognition system [2]. But multilingual modeling techniques
can also be applied here, and have been shown to produce
competitive results [3].

In this paper we extend the notion of multilingual mod-
elling to a new architecture of DBNFs, which we call shifting
DBNFs (SDBNFs) [4]. We show how training shifting deep
bottleneck features (SDBNFs) on multiple languages can lead
to better performance than training on only the target lan-
guage of the recognition system, especially in situations with
sparse data. For this we compare the performance of differ-
ent SBNFs and classical standard DBNFs on Bengali as target
language, and improve their performance by adding data from
the languages Assamese, Pashto, Tagalog, Turkish, and Viet-
namese.

2. RELATED WORK

Previous work has shown that neural networks offer the abil-
ity to train shared hidden representations across different

1http://www.iarpa.gov/Programs/ia/Babel/babel.html
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tasks. This works particularly well for speech recognition,
where different languages have distinct sounds, but may also
share acoustic cues which can be learned simultaneously on
multiple languages.

Consequently, several recent works on training multilin-
gual DBNFs have been published. Successful demonstrations
include the training of feature extraction networks in which
all layers are shared and the output layer either predicts the
members of a merged phone set [5] or contains a language-
specific layer [6] [7] [8] [9].

Since most modern DNN acoustic models are pre-trained
in an unsupervised fashion, it is also possible to use multiple
languages during pre-training only, and [10] has shown that
pre-training is indeed language-independent. Furthermore,
Gehring et al. proposed several multilingual deep neural net-
work architectures with the connection of bottleneck feature
extraction and acoustic model networks in order to create sig-
nificantly better acoustic models for a low-resource target lan-
guage [4].

In this paper, we focus on multilingual bottleneck features
with shared hidden representations and language specific-
output layers by presenting a new type of DBNFs, SDBNFs.
We also add tonal features to the input features of our SDBNF
network in order to investigate their effect on a multilingual
setup containing non-tonal languages.

3. PRE-PROCESSING PRIOR TO THE DBNF
NETWORK

In the past we have experimented with different kinds of in-
puts to DBNF networks, such as mel-scaled cepstral coeffi-
cients (MFCCs), logarithmic mel-scaled spectral coefficients
and minimum variance distortionless response (MVDR) co-
efficients [11]. Also, we have examined the use of features
targeting the tonal part of such languages as Vietnamese, and
how their use affects the recognition performance when ap-
plied to non-tonal languages. We have shown in [12] that
stacking MFCC, MVDR and two types of tonal features give
the best performance, relative to any of these features alone.

3.1. MFCC and MVDR Features

We extract the features for the MFCCs by using a window
of 32ms in length and a window shift of 10ms for short time
spectral analysis. Our Mel filterbank extracts 30 coefficients.
Instead of using an inverse discrete Fourier transform we use
a discrete cosine transformation for the transition into the cep-
stral domain, where we reduce the number of coefficients to
20 by liftering.

In addition to MFCC features, we also applied an MVDR
spectrum, to see how much combining multiple features helps
on its own. In this work, we use twice-warped MVDR [13].
Stacking MFCCs and MVDRs at the input of a DNN was
found to be helpful in experiments that were part of the NIST

2013 OpenKWS evaluation 2. While MFCC and MVDR fea-
tures are fundamentally similar and equally powerful, they
are nonetheless complementary. Training a system using both
gives gains simply by increasing the robustness of the extrac-
tion.

Fundamentally different from spectral features, which
capture the envelope of the speech signal, “pitch” fea-
tures capture variations in the fundamental frequency of the
speaker’s voice and are typically used in addition to spectral
features.

3.2. Fundamental Frequency Variation (FFV) Features

FFV [14] features have previously been used in tasks such
as speaker verification. When compared to “standard” pitch-
based features, their main advantage is that no explicit seg-
mentation into speech and silence segments (for which pitch
is not defined) is necessary.

Rather than locating the peak in the FFV “spectrum”
(which is defined over τ ∈ [−∞,∞]), we apply a filter-
bank, which attempts to capture meaningful prosodic varia-
tion, and contains a trapezoidal filter for perceptually “flat”
pitch, two trapezoidal filters for “slowly changing” (rising
and falling) pitch, and two additional trapezoidal filters for
“rapidly changing” pitch. In addition, the filterbank contains
two rectangular extremity filters, as unvoiced frames have
flat rather than decaying tails. This filterbank reduces the
input space to 7 scalars per frame, which we use as additional
“FFV” features in the final input vector.

3.3. Pitch Features

In this work, we extract pitch features using the approach
described in [15]. We compute a Cepstrogram with a win-
dow length of 32 msec, and use dynamic programming to
find the best path over time for the location of the maximum
in these coefficients under certain constraints, like maximum
pitch change per time unit. Additionally, we compute delta
and double delta features using the three left and right neigh-
bors as well as frame-based cross-correlation. This results in
8 additional coefficients (1 pitch, 6 delta and double-delta fea-
tures and cross-correlation). These 8 coefficients are added to
the original MFCC+MVDR feature vector.

4. MULTILINGUAL SHIFTING DEEP
BOTTLENECK FEATURES

4.1. Deep Bottleneck features

Standard bottleneck features as first described by Grezl et al.
are a common part of many automatic speech recognition se-
tups [16]. In this system, a feed-forward neural network is
trained as a discriminative feature extractor that predicts, e.g.,

2http://www.nist.gov/itl/iad/mig/openkws13.cfm
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Fig. 1. Proposed Shifting Deep Bottleneck features Architec-
ture

polyphone states from windows of standard speech recogni-
tion features like mel-frequency cepstral coefficients. This
network contains a narrow “bottleneck” hidden layer with
only a few units, which is placed between two larger layers.
By computing the activation of units in the bottleneck layer,
the network performs a non-linear discriminative dimension-
ality reduction of its original input. It can then be shown
that the bottleneck units provide features for GMM/HMM se-
tups that result in superior recognition accuracy. In previous
works, deep learning techniques were applied in BNF train-
ing, and they found that pre-training of the individual lay-
ers as restricted Boltzmann machines (RBMs) [17] or with a
stack of auto-encoder layers [2] were a crucial part in obtain-
ing good features.

4.2. Shifting Deep Bottleneck features

In the pre-processing stage of our speech recognizers, we ex-
tract stacked DBNF features before applying LDA. However,
typically the training of the DBNF does not employ a stacked
approach. To eliminate this mismatch, we conducted exper-
iments wherein the DBNF architecture is extended by train-
ing the feature extraction part of the DBNF (that which is
used later for preprocessing) on adjacent input feature win-
dows. First, we train a classical DBNF network as described
in the preceding section. Thereafter, we refine the network
by training it in the following way. In the forward pass of
network training, we compute the bottleneck layers from ad-
jacent frames and stack them. Then in backward propagation,
we average the gradients for the bottleneck layer. The hidden
layer and the output layer are thereby connected to a stack
of DBNFs trained on these adjacent windows. This approach
is similar to the TDNNs proposed in [18] or later convolu-
tive networks in [19], where the parameters of time shifted
copies are shared and scaled. A difference however between
our approach and theirs is that instead of simply training new
bottleneck features in the shifting process, we refine existing

Corpus Language Abbre Size

IARPA-babel103b-v0.3 Bengali BEN 10 h

IARPA-babel102b-v0.4 Assamese ASM 53 h

IARPA-babel104b-v0.4bY Pashto PUS 79 h

IARPA-babel106-v0.2f Tagalog TGL 73 h

IARPA-babel105b-v0.4 Turkish TUR 72 h

IARPA-babel107b-v0.7 Vietnamese VIE 79 h

Table 1. Corpora used for multi-lingual network training.

DBNFs trained in the first pass.

4.3. Multilingual Deep Bottleneck Features

In order to extract robust DBNF features from multilingual
resources, we focus on training bottleneck feature extract-
ing networks using both baseline and shifting DBNF archi-
tectures. The networks use shared hidden presentations and
language-specific output layers, which avoid the mapping of
phonemes of different languages to a common set as in [6] [7].
The auto-encoders used to initialize the hidden layers prior to
the bottleneck are pretrained on multiple languages.

5. EXPERIMENTS SETUP AND RESULTS

5.1. Copora and Baseline Description

We performed experiments with various corpora listed in Ta-
ble 1. All corpora contain narrow-band, conversational tele-
phone speech from land lines as well as mobile phones. For
the training of the target language, only 10 hours of data were
provided. And additional 356 hours of data from other lan-
guages was available for our use.

As a baseline, we used a system which was trained using
a multilingual bootstrap (MLBootstrap) technique. For pre-
processing, we used a standard MFCC front-end. For boot-
strapping, we took the already trained models from four lan-
guages (Cantonese, Turkish, Vietnamese and Pashto) to es-
timate the initial model parameters for Bengali, our target
language. This was possible as all data from the BABEL
project uses X-SAMPA as a common phoneme set. Based on
these initial models, we built first a context-independent sys-
tem and then a context-dependent system with 2000 models.
We trained our networks to predict roughly 2000 context de-
pendent targets from different features: (1) the combination of
20 MFCC and 20 wMVDR coefficients(MFCC+MVDR) plus
tone (7 FFVs and 8 Pitch) features and (2) the combination of
20 MFCC, 20 wMVDR coefficients without tone. These were
extracted from 32 ms windows with a 10 ms frame shift.

Hidden layers for DBNF networks were pre-trained in an
unsupervised manner as denoising auto-encoders, in which
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a single layer is trained to properly reconstruct its input af-
ter random corruption has been applied [20]. The input vec-
tor was deliberately corrupted by applying standard masking
noise to set 20% of their elements randomly to zero. For su-
pervised fine-tuning, we used the newbob algorithm in which
two separate thresholds control the application of learning
rate decay and the total duration of training by monitoring
frame-level classification accuracy on a held-out validation
set. The DBNF networks contain four auto-encoder layers
with 1200 units each, i.e. seven layers in total (with bottle-
neck, additional hidden layer and output layer). 42 units were
used in the bottleneck layer, whereas the layer afterwards con-
tained 1200 units. A 3-gram language model was built from
the reference transcriptions of the Bengali corpus. Decoding
was done with the JANUS speech recognition toolkit [21] us-
ing networks previously trained on GPUs with Theano3.

5.2. Results

Table 2 lists the performance of baseline systems on the Ben-
gali target language in terms of the word error rate (WER).
The GMM system is a context-dependent system using the
same states as the DBNFs setups and was trained from the
same alignment described in the previous section. The GMM
baseline trained with MLBootstrap performs 1% absolute
better than the GMM baseline from flatstart. A standard
DBNF system does not provide much improvement in this
low-resource condition (about 7.6% and 8.7% relative on
MFCC+MVDR and MFCC+MVDR+tone respectively). Ap-
plying tonal features (FFV+Pitch) together with the com-
bination of MFCC and MVDR features results in systems
which also outperform the non-tonal DBNF systems by 1%
absolute.

Systems Features WER(%)

Baseline flatstart MFCC13 79.1

Baseline MLBootstrap MFCC13 78.0

DBNFs flatstart MFCC+MVDR 74.7

DBNFs MLBootstrap MFCC+MVDR 72.1

SDBNFs MLBootstrap MFCC+MVDR 71.8

DBNFs MLBootstrap MFCC+MVDR+tone 71.2

SDBNFs MLBootstrap MFCC+MVDR+tone 70.6

Table 2. Recognition performance of baseline systems on the
Bengali target language

Results for applying multi-lingual training with shared
hidden layers to the DBNF networks are listed in Table 3.
Different architectures and input features were applied to the
DBNF systems: (1) the baseline DBNFs architecture using
MFCC+MVDR+tone as input features (tone no-s); (2) the

3http://deeplearning.net/software/theano/

shifting DBNFs architecture using MFCC+MVDR+tone as
input features (tone shift); (3) the baseline DBNFs archi-
tecture using MFCC+MVDR as input features (no-t no-s);
(4) the shifting DBNFs architecture using MFCC+MVDR as
input features (no-t shift);

Additional languages tone tone no-t no-t
no-s shift no-s shift

ASM 68.2 67.7 – –

PUS 68.0 67.7 68.8 68.2

TGL 68.2 67.5 – –

ASM,PUS 66.5 66.1 67.5 66.9

ASM,PUS,TGL 66.1 65.4 67.1 –

ASM,PUS,TGL,YUE 65.5 65.0 – –

ASM,PUS,TGL,YUE,VIE 65.1 64.5 – –

Table 3. Results for Bengali DBNF systems with shared hid-
den layers trained on multiple additional languages

It can be seen that the multi-lingual numbers look most
promising. Adding just one more language (ASM, PUS or
TGL) the recognition performance was increased by 4.5%
relative (a drop in WER from 71.2% to 68.0% or 68.2%).
Adding two languages (ASM and PUS) gives a bigger gain
(about 1.5% absolute and 2.5% relative) than adding only one
language. Adding 3-5 languages also gives a bigger gain but
with smaller improvements with each additional language.
The proposed architecture with shifting not only gives gains
in a mono-lingual but also in multilingual context (from 0.4%
to 0.7% absolute improvement). As one can see on the Table
3, adding tonal features gives reductions of about 1% absolute
WER compared to the systems using only MFCC+MVDR as
input features.

6. CONCLUSION AND FUTURE WORK

With the results obtained above, we have shown that the pro-
posed SDBNF architecture is useful for multilingual DBNF
setups trained on not only one language but also on multi-
ple languages for which a larger amount of data might be
available. It was shown that the DBNF systems trained with
MLBootstrap are better than the ones trained with a flatstart
technique. We have also shown that tonal features are helpful
for multilingual DBNFs systems. The WER on the the low-
resource conversational telephone speech transcription task
in Begali was reduced by 17.3% relative when compared to
an MFCC baseline system. We achieved this by using ad-
ditional data from Assamese, Pashto, Tagalog, Turkish and
Vietnamese. In the future, we would like to explore how
multi-lingual data can be leveraged to improve DBNF net-
work training and to further enhance the architectures sug-
gested.
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