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ABSTRACT

In this paper, a stereo vision based pothole detection system
is proposed. Using the disparity map generated from an effi-
cient disparity calculation algorithm, potholes can be detected
by their distance from the fitted quadratic road surface. The
system produces the size, volume and position of the potholes
which allows the pothole repair to be prioritised according to
its severity. The quadratic road surface model allows for cam-
era orientation variation, road drainage and up/down hill gra-
dients. Experimental results show robust detection in various
scenarios.

Index Terms— Stereo vision, pothole detection, disparity
calculation

1. INTRODUCTION

Potholes in British roads have become an increasingly serious
problem, with a third of vehicles experiencing pothole related
damage in the past 2 years [1]. The costs to maintain the
road are billions of pounds and local councils pay millions of
pounds in compensation [2, 3]. Current methods for detecting
potholes in urban roads rely mainly on public reporting, such
as through hotlines or social networking websites, which are
resource intensive and ineffective. For example, in the most
well-known fixmystreet.com site [4], only a small percentage
of problems have been reported. It is inconvenient to report
the size and severity of potholes with the current system. Con-
sequently, a lack of information about the size and severity
affects the priority of patching the potholes.

More advanced road surveying techniques exist for high-
way maintenance, where specialized vehicles equipped with
laser scanners are in use [5]. Due to their high costs, typical
survey cycles are once every 4 years. For urban roads, Med-
nis et al. proposed a system that utilises a mobile phone ac-
celerometer to detect and locate potholes [6]. It records the vi-
bration of vehicles when hitting a pothole. By this means, the
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severity can be approximated by the strength of the vibration.
However, the vehicle has to be driven into the pothole, which
could cause damage. Machine vision based methods for auto-
matic pothole detection have also been proposed, which only
require a camera as input. However, existing approaches rely
on the texture of the road surface, resulting in low accuracy.
Mis-detections are mainly due to variation of lighting condi-
tions [7].

Stereo vision based techniques, on the other hand, provide
3D measurements, so that the geometric features of a pothole
can be determined easily. Stereo vision can provide informa-
tion on the size of the pothole, without the need for using high
cost specialized laser scanners. By putting the system on a ve-
hicle that patrols the roads (whilst undertaking other jobs), it
will be possible to continuously detect and evaluate potholes.
It is important that the system can perform pothole detection
in real-time to reduce data storage. The major difficulty of im-
plementing a real-time and robust stereo vision system resides
in the intensive calculations involved in generating the dispar-
ity map with high accuracy. Generally, disparity calculation
methods [8], such as graph cut (GC) [9], belief propagation
(BP) [10] and dynamic programming (DP) [11], would not
meet the real-time requirement without specialized hardware
accelerators [12].

We have proposed a real-time disparity calculation algo-
rithm [13], in which the disparity search range for a pixel at
the image line (v) is supplied by the disparity values calcu-
lated at three neighbouring pixels at a lower image line (v-1).
This method yields a 90 percent computation saving in com-
parison to the most basic block matching algorithm. At the
same time, the reduction in the search range leads to lower
ambiguities which then produces a higher accuracy. Due to
the high surface continuity of the road and pothole areas, this
algorithm performs exceptionally well in pothole detection
applications.

The flowchart of the proposed pothole detection system is
illustrated in Figure 1. This paper deals with the highlighted
part of the system, in which the disparity map is firstly calcu-
lated from left/right image pairs captured by stereo cameras
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Fig. 1: Pothole detection system.

using a computationally efficient algorithm. Subsequently,
the obtained disparity map is converted into a world coordi-
nate system (WCS) point cloud. By fitting these 3D points
into a quadratic road surface, outliers that are lower than
the fitted surface will be determined as pothole points. The
quadratic road surface has its first order terms related to the
camera orientation and second order terms indicating the
drainage and up/downhill gradients. With the 3D points cor-
responding to the potholes determined after surface fitting,
the relevant pothole areas in the disparity map can be de-
termined. Finally, with the connected component labelling
(CCL) algorithm applied, potholes can be labelled as pothole
candidates. When a pothole candidate is determined in a
particular frame, its GPS location, original image pairs, size
and volume of the potholes and 3D point cloud can be saved
and accessed later via the Internet or USB port.

In the reminder of this paper, Section 2 introduces details
of the proposed algorithm, Section 3 demonstrates the exper-
imental results of the proposed algorithm and Section 4 con-
cludes the paper.

2. POTHOLE DETECTION SYSTEM

2.1. Disparity calculation

In the disparity calculation procedure, it is assumed that the
input images are rectified and co-planar, so that the epipo-
lar lines are aligned with the corresponding scanlines. In this
case, the correspondence can only exist on the same scanline.
If p(u, v) and q(u0, v) are corresponding pixels in the left and
right images respectively, then the disparity d between p(u, v)
and q(u0, v) is defined as d = u−u0. The authors have previ-
ously presented a computationally efficient algorithm for dis-
parity calculation in street scenes [13]. Its attained efficiency
relies on a reduction in the search range. In a typical street
scene, the road is a supporting surface which extends from
the near to the far field, such that the near field road pixels
should show a large disparity value whilst the far field ones
are likely to have a small disparity value. Obstacles protrude
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Fig. 2: Controlled search range generation.

from the road surface but potholes will be lower than the road.
The base of the obstacle should have a disparity level that is
similar to its neighbouring road disparity level; similarly, the
pothole disparity is not very different from that of the road. .
These means that the disparity search range of a given image
line (v) can be supplied by the disparity values of its neigh-
bouring pixels in the lower image line (v-1).

The disparity calculation algorithm consists of three steps:
matching cost computation, search range recalculation and,
finally, disparity enhancement. First of all, it is assumed that
every obstacle is on the road surface and that the bottom part
of the obstacle has the same disparity as the road surface of
the same image line. These steps are discussed below.

2.1.1. Matching cost computation

One of the most important parts in a disparity calculation al-
gorithm is the cost function. The Sum of Absolute Differ-
ence (SAD), the Sum of Squared Difference (SSD), the Nor-
malised Cross-Correlation (NCC) and the Sum of Hamming
Distances (SHD) are the most used cost functions [12]. By
calculating the cost, the cost volume C(u, v, d) for each pixel
is obtained. For each pixel’s matching cost function, a distinct
peak may exist which indicates the correct correspondence.
However, this process consumes a large amount of compu-
tational power during the exhaustive correspondence search-
ing and, when complex situations are encountered, errors are
likely to be introduced in homogeneous regions. To solve this
problem, it is proposed that the algorithm should generate a
controlled search range.

2.1.2. Controlled search range

Given the road obstacle assumption, the disparity of the cur-
rent pixel d(u, v) would have connections with the disparities
of the pixels of the lower line d(u − 1, v − 1), d(u, v − 1)
and d(u + 1, v − 1), as shown in Figure 2. By exploring
these connections, the neighbourhood disparities of the pix-
els in the image line v − 1 can be used to generate a much
smaller search range for the pixels in the image line v. By
controlling the search range SR(u, v) according to the neigh-
bourhood support points, the potential matching ambiguities
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can be reduced. Consequently, a much faster and more accu-
rate calculation compared to the exhaustive search algorithms
can be achieved. The proposed algorithm generates a con-
trolled search range according to Equation 1.

SR(u, v) =

SR(u− 1, v − 1) ∪ SR(u, v − 1) ∪ SR(u+ 1, v − 1) ,
(1)

where

SR(u− 1, v − 1) ∈
{(d(u− 1, v − 1)− τ) . . . (d(u− 1, v − 1) + τ)} , (2)
SR(u, v − 1) ∈
{(d(u, v − 1)− τ) . . . (d(u, v − 1) + τ)} , (3)
SR(u+ 1, v − 1) ∈
{(d(u+ 1, v − 1)− τ) . . . (d(u+ 1, v − 1) + τ)} , (4)

where d(u, v) represents the disparity value of the pixel in
position (u, v) and τ denotes the bound of the search range.
By minimising τ , the SR(u, v) can be minimised. In this
work, we have applied τ = 1, such that only 1 pixel variation
is allowed, from one of its three neighbours in the lower image
line (v − 1), to contribute to the search range of the current
line (v).

2.2. Pothole detection

After disparity calculations, the next step is to detect the pot-
holes. In the proposed algorithm, a surface fitting algorithm
is used to estimate the road surface. Hence, points that are
lower than the road surface can be defined as potholes. The
detection and segmentation is achieved by CCL.

2.2.1. Conversion between the disparity and Euclidean

Points in the disparity domain ([u, v, d] space) can be pro-
jected back to the world coordinate system ([x, y, z] space)
using the relationship as described in Equation 5.

xi =
zi · ui
f

, yi =
zi · vi
f

, zi =
bs · f
di

, (5)

where i is the pixel index, [u, v] is referred to as the calibrated
coordinates rather than the physical pixel locations, with bs
and f denoting the base-line and focal length distances. For
the ith pixel in the disparity image and WCS, one-to-one point
associations are maintained as Di ∼ [u, v,D]i ∼ [x, y, z]i.
For example, when the oth pixel is classified as the pothole
point in the disparity image (denoted by Dp), its equivalent
point in the Euclidean domain will be found at [x, y, z]o.

2.2.2. Surface fitting

With the disparity image obtained and the WCS point cloud
calculated, potholes can be obtained by surface fitting, subse-
quently eliminating the road surface areas. Generally, roads
can be modelled efficiently by a quadratic surface in the
Euclidean domain. The proposed fitting algorithm uses a
low computational bi-square weighted robust least-squares
method [14, 15]. This method can reduce the effect of out-
liers. To the fitting procedure, the outliers would be obstacles
or potholes. We define the quadratic road model as:

z = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2. (6)

The equation takes into account the twisting and bending na-
ture of the road surface. A similar model has been used in
[16] without the xy term. With the xy term being added in
our model, twisting of the road surface can be represented.
An estimated surface that is close to the road can be fitted by
finding the coefficients a1, . . . , a6 . The pothole can then
be detected by taking the actual surface, z, and subtracting
the estimated surface, ẑ, from it. The difference between the
data points on the surface will contain the potholes as its data
points should be lower than the fitted surface.

The steps to obtain the coefficients can be broken down to
as follows:

1. Fit the surface using normal least-squares:

S =

n∑
i=1

(zi − ẑi)2. (7)

2. Minimise the residual, r = (zi − ẑi)
2 by differenti-

ating the sum with respect to the coefficients. The resulting
equations in matrix form are Equation 8, where, for example,
Sxy =

∑n
i=1 wixiyi. The initial weights, w, are 1.

n Sx Sy Sx2 Sxy Sy2

Sx Sx2 Sxy Sx3 Sx2y Sxy2

Sy Sxy Sy2 Sx2y Sxy2 Sy3

Sx2 Sx3 Sx2y Sx4 Sx3y2 Sx3y

Sxy Sx2y Sxy2 Sx3y Sx2y2 Sxy3

Sy2 Sxy2 Sy3 Sx2y2 Sxy3 Sy4




a1
a2
a3
a4
a5
a6

 =


Sz

Sxz

Syz

Sx2z

Sxyz

Sy2z


(8)

3. Normalise the residuals, whereK is the tuning constant
4.685, s represents the robust variance (the median absolute
deviation of the residual)/0.6745.

radj =
ri√

1− hi
u =

radj
Ks

(9)

4. Compute the bi-square weights for the ith point as fol-
lows:

wi =

{
(1− (ui)

2)2 |ui| < 1
0 |ui| ≥ 1

,

5. Check if the fit converges. If not, recompute the weight
with the new residual and iterate until it converges. Typically,
convergence can be achieved between 2 to 4 iterations.
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Fig. 3: Experimental setup includes (a,f) PointGrey Flea 3
Cameras; (b) Thorlab optical rail; (c) Synchronisation board;
(d,e) Suction pad and vibration damper.

2.2.3. Pothole detection

After surface fitting, the point cloud that belongs to the pot-
holes can be selected by applying a threshold (κ) on the Eu-
clidean distance between each point and the surface (zi−ẑi >
κ). With the pothole 3D points determined, the relevant pix-
els in the disparity images can be segmented. With the con-
nected component labelling algorithm applied to these seg-
ments, pothole areas can be labelled. Finally, the volume of
the pothole can be calculated using the pothole point cloud.

3. EXPERIMENTAL RESULTS AND SETUP

The experiments are carried out using two PointGrey Flea 3
Cameras, as shown in Figure 3. Two cameras are mounted
in parallel onto the optical rail, with a synchronisation board
in the middle (Arduino board). This produces a 20Hz clock
signal to synchronise the cameras. The lenses on the cameras
are wide angle lenses with 2.8mm focal length and F/1.2
aperture. They have a 93.2◦ × 70.7◦ field of view, with the
forward point setup, and we selected a 3m× 5m area in front
of the vehicle as the region of interest (ROI). A threshold κ =
0.04m is used for detecting the pothole point cloud.

The experimental results are shown in Figure 4. It is ob-
served that the potholes can be detected correctly in most sce-
narios. In the figure, green areas indicate the ROI, and other
highlighted colour areas represent potholes. In Figure 4(e),
the blue area should not be counted as a pothole but it is still
a road surface defect. As shown in Figure 4(g), a false detec-
tion is indicated in blue, which was caused by the errors in the
disparity calculation. The high detection accuracy is achieved
by defining the ROI in front of the vehicle, so that other ob-
stacles and vehicles would not deteriorate the surface fitting
results. The proposed system is not restricted by a fixed cam-
era installation, and road curvatures can be well represented
by the quadratic surface. A video result is also available from
[17].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4: Pothole detection results. The left column is the de-
tection results, green areas highlight the ROI and the red ar-
eas indicate potholes. The right column is the corresponding
surface fitting, black areas indicating the ROI and red areas
representing detected potholes.

4. CONCLUSION

In this paper, a pothole detection system has been described.
With a previously developed computationally efficient and ro-
bust disparity calculation algorithm and a quadratic fitting in
the WCS point cloud, the road surface could be modelled in
real-time. With the road surface fitted, a simple height thresh-
old (0.04m lower) can outline the potholes, utilizing only the
geometrical deviation to that of the road. By setting the ROI
in front of the vehicle, experimental results show high road
fitting and pothole detection accuracies.
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