2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

GMM-FREE DNN ACOUSTIC MODEL TRAINING

Andrew Senior, Georg Heigold, Michiel Bacchiani, Hank Liao

Google Inc.,
New York
{andrewsenior,heigold,michiel,hankliao } @ google.com

ABSTRACT

While deep neural networks (DNNs) have become the dom-
inant acoustic model (AM) for speech recognition systems,
they are still dependent on Gaussian mixture models (GMMs)
for alignments both for supervised training and for context
dependent (CD) tree building. Here we explore bootstrap-
ping DNN AM training without GMM AMs and show that
CD trees can be built with DNN alignments which are bet-
ter matched to the DNN model and its features. We show
that these trees and alignments result in better models than
from the GMM alignments and trees. By removing the GMM
acoustic model altogether we simplify the system required to
train a DNN from scratch.

Index Terms— Deep neural networks, hybrid neural net-
work speech recognition, Voice Search, mobile speech recog-
nition, flat start, Viterbi forced-alignment, context dependent
tree-building.

1. INTRODUCTION

In recent years, neural networks have become a fundamen-
tal part of Hidden Markov Model (HMM) speech recogni-
tion systems. Neural networks may be used either as nonlin-
ear feature extractors, where the features are used in a con-
ventional Gaussian Mixture Model (GMM) likelihood esti-
mator [1, 2], or as so-called “hybrid” models where a neural
network estimates class posterior probabilities [3].

In this paper, we investigate hybrid models. While the
use of hybrid models removes the need for a GMM model at
inference time, such systems still have a dependence on the
GMM systems that preceded them in two main areas:

1. Alignment: A neural network is trained using a state
alignment that provides a label for each frame in the
training set. Once a DNN model is available, it can be
used to force align the training set, but in all the systems
that we know of, the original alignment for a language
was generated with a GMM system. In contrast, GMM
systems are often “flat started” [4] from a phonetic tran-
scription without any initial time alignment.

2. Context dependency trees: modelling context de-
pendent (CD) states results in a significant accuracy

978-1-4799-2893-4/14/$31.00 ©2014 |[EEE

gain compared to context independent (CI) states both
in GMM-HMM systems and DNN-HMM hybrid sys-
tems. Again, in all the cases we know of, the context-
dependency tree is constructed using an alignment gen-
erated with a GMM-HMM. Further, these context de-
pendency trees are built with the features used by
GMMs, not those used by the DNNs, although Bacchi-
ani [5] recently proposed building trees for DNNs with
DNN activations as features.

In addition, DNN systems that use constrained maximum
likelihood linear regression [6] for speaker adaptation also
use a GMM to compute the alignment from frames to mix-
ture components, and hence the linear transform to apply to
the features.

In this paper we show that DNNs for acoustic modelling
can be flat started (Section 2) and their alignments used for
building CD state-tying trees (Section 3) which can be used
for training CD DNNSs (Section 4). We further show that on-
the-fly realignment can be used to refine DNN models. Ex-
periments and conclusions are presented in Sections 5 and 6
respectively.

2. FLAT STARTING

A GMM-HMM AM is typically trained on a set of acous-
tic utterances, each of which is accompanied by a human- or
machine-generated transcription. The word-level transcrip-
tion can be converted to a state sequence using a lexicon
that provides the pronunciation(s) of each word; as well as
context and HMM transducers that generate a sequence of
context-dependent states for the transcription. Initially such
a state sequence has no timing information and we do not
know which parts of the acoustic signal correspond to which
states in the state sequence. In the expectation-maximization
(EM) [7] training algorithm, we alternate finding the maxi-
mum likelihood state alignment given the current GMM AM
with finding the expected parameters of the GMM AM given
that alignment.

When building a GMM-HMM speech recognition system
from scratch, the iterative EM algorithm is repeated many
times in phases, between which the model complexity or fea-

5639

tures are changed. For instance, early phases will use CI
states, simple features (such as perceptual linear predictive
features (PLPs) with deltas and delta-deltas, denoted PLPDA)
and few mixture components per modelled distribution. Sub-
sequently, discriminatively trained features such as linear dis-
criminant analysis (LDA) features may be used; CI states may
be replaced with a much larger inventory of CD states; and
each state is modelled with an increasing numbers of mixture
components.

In this sequence of increasing model complexity, the
model’s accuracy increases and the alignment from acoustic
frames to states is progressively refined. It should be noted,
however that when CI states are replaced with CD states, the
state boundary definitions become less clear since there is no
acoustic constraint on whether a frame should be classified as
A followed by B vs B preceded by A.

To bootstrap the training of such a model, we must con-
struct either a state alignment without a model or a model
without a state alignment, in a “flat start” initialization. One
way of doing this is to initialize a one-Gaussian-per-state CI
model with the global dataset mean and covariance. With
the constraint of the state sequence for each utterance, such
a model can generate a crude alignment which is sufficiently
accurate for the EM algorithm to build upon, eventually pro-
ducing an accurate speech recognition system.

To our knowledge, all hybrid DNN systems (such as [8, 9,
10]) are built using an alignment that can ultimately be traced
back to a GMM model, or in some cases [11] to the manual
phone alignment of the TIMIT dataset. These DNN models
thus have implicit dependency on the original GMM used, as
well as the features and context window size of that model.

While we are unaware of any DNN-based speech systems
that use a flat start, neural network handwriting systems [12]
have used flat start, for instance using an “equal-length” seg-
mentation where an alignment is constructed without a model
assuming that all the characters are equal length.

2.1. DNN Flat Start

In our work, we adapt a GPU-based neural network trainer
that has been used to train large-scale production speech mod-
els using alignments from GMM-HMMs and DNN-HMMs.
We randomly initialize a neural network with zero-mean,
small variance weights and construct a CI state sequence
(without any timing information) for each utterance from the
word-level manual transcription. The untrained model is used
to force-align a batch of data (10,000 frames, or roughly 25
utterances). The labelled frames are shuffled randomly and
the model is trained with stochastic gradient descent on mini-
batches of 200 frames and a cross entropy criterion.
Adopting this approach means that, except for the first
minibatch of each batch, the model used at training time is
not the model used for alignment, so there is a certain amount
of “staleness” in the alignments, but the alignments are con-

strained to match the provided state sequence and they will
not change significantly, except at the start. After this, the
batch size can be increased for greater computational effi-
ciency and better shuffling.

The simplest alternative is to align each utterance and
backpropagate its frames, which results in no staleness. How-
ever, training on many frames from a single utterance (which
are highly correlated in speaker, channel and background
conditions as well as in which state symbols are observed)
leads to a poorer gradient estimate (less representative of
the ideal gradient computed on the whole training set) and
hence slower convergence than from a minibatch of random
frames. A disadvantage is that each frame must be forward-
propagated twice — once for alignment and once to com-
pute the gradients for backpropagation. Activations could be
stored, but this introduces a further staleness and additional
storage and system complexity.

Alignments are made with the Viterbi algorithm on the
GPU using custom kernels. One difficulty with performing
on-the-fly alignment is that it is hard to compute an objec-
tive measure of the performance of the network during train-
ing since the conventional measures of frame accuracy, cross
entropy or squared error are computed relative to the targets
from the alignment which are taken as ground truth. In this
case the alignments are given by the network, and will in-
evitably be consistent with the frame-level predictions result-
ing in high frame accuracies. For instance a network tending
to give high scores for silence can produce alignments con-
sisting almost entirely of silence, and relative to these targets
it will appear to have very high frame accuracy.

2.2. State prior estimation

The alignment is also used to compute the state prior
distribution, P(s;) which is essential for computing the
scaled posteriors used during HMM decoding (P(xt|s;) o
P(si|z:)/P(s;) for states s; and observations x; at time t).
Scaled posteriors are also required for computing the forced
alignments during training. When flat starting, the priors must
be bootstrapped along with the model. State priors can be es-
timated by forced-aligning the whole training set and using
the normalized state frequencies as the prior distribution. To
estimate the empirical class frequency with minimum com-
putation, and update it as the model changes, we count the
state observations ¢; (7) after each alignment, 7, and update a
running average c; (1) of state observations.

*

P(s;) ~ 70 (1)
3 I
ci (1) =ve;i (1= 1) + ci(7) 2

This average is initialized with equal counts (corresponding
to a uniform prior which matches the posteriors given by the
randomly initialized model’s outputs), and updated with a de-
cay factor . Choosing 7y too small means that rarely observed

5640

symbols will be forgotten. Choosing it too large means that
the network’s posteriors are stale, leading (before the prior
has converged) to bias during decoding — particularly affect-
ing silence and resulting in speech frames being aligned to
silence or silence being aligned to speech labels. In our ex-
periments we have found that v = 0.995 worked well. When
considering flat start with a CI state inventory, no symbol is
too rare, and later in training we can use a reasonable model
to compute a prior once over a large dataset. Subsequently
the empirical prior changes more slowly and online updating
is less important.

3. CONTEXT-DEPENDENT TREE BUILDING

It is well known that modelling phonetic states separately,
according to the phonetic context in which they occur, can
lead to better modelling of the state distribution. Because of
the very large number of possible contexts, many of which
may not be observed in the training set, data-driven tree-based
state-tying algorithms [13, 14] have been developed to cluster
together sets of contexts for a given CI state, with each such
cluster or CD state being modelled separately.

Having bootstrapped a CI DNN model, this can be used
to compute an alignment of the training set which is then
used to build a context clustering tree for each CI state, us-
ing the method of Young et al. [14]. For each CI state, suf-
ficient statistics of observations x are gathered for each pos-
sible context. In this case we build triphone trees, consid-
ering the cross-word context of the preceding and follow-
ing phone. We accumulate sufficient statistics to model each
context dependent state with a diagonal covariance Gaussian.
(Count, mean and sum-of-squares of x.) Given the context la-
bellings and sufficient statistics, a greedy hierarchical divisive
clustering is applied, choosing the split which maximizes the
likelihood gain from a set of predetermined, linguistically-
motivated questions. Splits are applied recursively with the
constraint that no leaf may have fewer than 10,000 observa-
tions. The 126 trees are then aggregated (having a total of
around 40,000 leaves) and pruned back by iteratively merg-
ing the minimum likelihood split until the set of trees has the
desired number of states (2000 or 16,000 for the experiments
described here), yielding a nested hierarchy of state invento-
ries.

4. CD TRAINING

The resulting context dependency clustering can then be used
to relabel the CI alignment from the flat start model, produc-
ing an alignment with the same state boundaries but with CD
labels. This can then be used to train a new model with the
new CD state inventory. For a network which differs only in
the output state inventory, the new network can be initialized
with the weights of the old network, copying the weights of
the CI states for all the CD state outputs that are descended

from that CI state, though in the experiments presented here
we always train a new network from a random initialization.

Once we have trained the CD model, we can use it to
generate a new forced-alignment of the training data. Such
an alignment will be better-matched to the current model and
potentially lead to better performance, particularly for a more
complex model than that used to generate the original align-
ment.

1e+10 . I
Cl Activations
Cl Scores
Filterbank -
Te+08 PLPDA o |

1e+06

10000 f

Log likelihood loss

100 f

20000 30000 40000

Split number

0 10000 50000

Fig. 1: A graph of log likelihood losses (log scale) as splits
in the trees are greedily merged, from the ~ 40, 000 state full
trees on the right, back to the 126 CI states at the left. The
high (1024) dimensional CI activations give the highest split
gains and the smoothest curve.

5. EXPERIMENTS

5.1. Flat start

First, we show the results of training a flat start model as de-
scribed in Section 2. We train a 6-hidden-layer network with
1024 sigmoid units per layer and 126 CI softmax outputs on
a 1900 hour corpus of anonymized, hand-transcribed US En-
glish voice search and dictation utterances. WER evaluations
were carried out on a disjoint 23,000 word test set of similar
utterances. The network inputs are stacked 40-dimensional
25ms log mel filterbank energies with a context window of 16
past and 5 future frames. This flat started CI model achieves a
WER of 21.3% on the test set, compared to a model with the
same configuration trained using the best alignment available
(from a large, 85M parameter ReLU DNN with 14,000 CD
states) which achieves a WER of 16.4%. This seems to be a
reasonable WER given the limited alignment and a reasonable
starting point for CD tree building.

5.2. Tree-building

We then build CD trees as described in Section 3 using a va-
riety of features. Traditionally GMM CD trees are built using

5641

Tree-building WER | WER
Features 2.7M) | (56M)
GMM plpda 14.3 104
DNN plpda 14.7 10.5
DNN fb 14.6 10.6
DNN fbda 14.5 10.5
DNN ciact 14.3 10.3
DNN ciscore 14.2 104

Table 1: WERs for small (2.7M parameter, 2,000 output) and
large (56M parameter, 16,000 output) networks after training
with the state inventories for different trees using the align-
ment of the best available model (85M parameter, 14,000 out-
puts, using GMM plpda trees).

39-dimensional PLPDA features. Here we build trees with
these features (plpda), with single-frame filterbank energies
(fb: 40 dimensions); with fb features and their velocities
and accelerations (fbda: 120 dimensions); with the CI log
posteriors from the aligning network (ciscore: 126 dimen-
sions) and the activations of the penultimate layer of the DNN
(ciact: 1024 dimensions). These trees all have roughly
40,000 leaves. Figure 1 shows the log likelihood gains of the
splits chosen by the greedy algorithm.

5.3. Training with DNN-derived trees

As described in Section 4 we then train DNN models on this
alignment. Here we train models with 6 hidden layers of 512
rectified linear units (ReL.Us) [15] using labels from the 2000
state inventory from each of the trees. To compare these mod-
els with different CD state inventories, we measure the CI
state frame accuracy, FA ¢y, is the fraction of development
set frames, x(¢), for which the correct CI state CI™(t) has the
greatest posterior, summed over the child CD states CD ;:

N
1
FAcr = N E §(CI*(t),arg max; P(CI;|x(t)))
t—1

3)
> P(CD;lx(t)).)

CD]‘GCIi

P(CL[a(t)) =

We first train models using the alignment from our best, large
DNN. The results, in Table 1 show that models using trees
built with the DNN features (ciscore and ciact) perform
very well, even outperforming GMM plpda trees that match
the model used to generate this alignment.

We then train models on the GMM-free, DNN CI align-
ment. The WERs for these models are shown in Table 2.
Among the models with the CI alignment (among which the
WER variation is small), the model with the GMM state in-
ventory performs relatively poorly. For reference, training
equivalent models with the best model alignment, a WER of
14.3% is achieved.

Tree-building Features | Dimension | WER | FA¢;
GMM plpda 39 15.3 67.0
DNN plpda 39 15.2 66.8
DNN fb 40 15.1 66.8
DNN fbda 120 | 15.0 66.8
DNN ciscore 126 15.1 66.9
DNN ciact 1024 15.2 67.0

Table 2: WERs and CI state frame accuracies for 2000-
output models trained on the alignment from the bootstrap CI
DNN with different CD state-tying trees. Here models using
trees built with the DNN-alignment all outperform the origi-
nal GMM-alignment-based trees.

If we train a large (55M parameter, 16,000 ciscore CD
states) model on the CI alignments, and realign the data, then
retrain the small model, it achieves a WER of 14.8%.

5.4. Realignment

We trained a large network (6 hidden layers of 2176 ReLUs
with 14000 outputs) with a fixed alignment generated from a
network of the same shape. By 7 billion frames the network
reaches a WER of 9.4%. (WERs in this paragraph were on
a different test set yielding lower WERSs than in the previous
section.) However, if the same network is cloned at 2 billion
frames, when the WER was 9.8%, and training is continued
with on-the-fly batch Viterbi realignment, the WER reached
9.3%.

6. CONCLUSIONS

We have shown that DNNs can be bootstrapped without
an initial alignment by on-the-fly Viterbi alignment using a
randomly-initialized model. Further, we have demonstrated
that context dependent DNNs can be successfully trained
without the use of GMMs, either for flat start or for the align-
ment for CD tree building. By building the CD trees on an
alignment from a DNN and using features better suited to a
DNN, we have shown that such GMM-free training can result
in better models than when using conventional, GMM-based
flat starting and CD tree building. Among the features that
we have explored for tree-building, the CI scores of the boot-
strap network seem to be best, though filterbank features and
the penultimate layer activations also outperform the original
trees. Realignment of well-trained models has shown small
gains, although larger gains can be expected from sequence
training [16].

In future work, we plan to investigate alternative features,
and the impact of iteratively realigning with larger, state-of-
the-art models from flat start CI alignments.

5642

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

7. REFERENCES

H. Hermansky, D.P.W. Ellis, and S. Sharma, “Tandem
connectionist feature extraction for conventional HMM
systems,” in Proc. ICASSP, 2000.

T.N. Sainath, B. Kingsbury, and B. Ramabhadran,
“Auto-encoder bottleneck features using deep belief net-
works,” in Proc. ICASSP, 2012.

N. Morgan and H. Bourlard, “Continuous
speech recognition: An introduction to the hybrid
HMM/connectionist approach,” IEEE Signal Process-
ing Magazine, vol. 12, no. 3, pp. 25-42, 1995.

S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev,
and P. Woodland, HTK Manual, 3.1 edition, 2000.

M. Bacchiani, “Context dependent state tying for speech
recognition using deep neural network acoustic mod-
els,” in Proc. ICASSP, 2014.

A. Mohamed, T.N. Sainath, G. Dahl, B. Ramabhadran,
G. Hinton, and M. Picheny, “Deep belief networks using
discriminative features for phone recognition,” in Proc.
ICASSP, 2011.

A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maxi-
mum likelihood from incomplete data via the EM algo-
rithm,” Journal of the Royal Statistical Society, vol. 39,
pp- 1-39, 1977.

G. Hinton, L. Deng, D. Yu, G.E. Dahl, Mohamed A.,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N.
Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition,” IEEE Sig-
nal Processing Magazine, vol. 29, pp. 82-97, November
2012.

O. Abdel-Hamid, A-R. Mohamed, H. Jiang, and
G. Penn, “Applying convolutional neural networks con-
cepts to hybrid NN-HMM model for speech recogni-
tion,” in Proc. ICASSP. IEEE, 2012, pp. 4277-4280.

N. Jaitly, P. Nguyen, A. W. Senior, and V. Vanhoucke,
“Application of pretrained deep neural networks to large
vocabulary speech recognition,” in Proc. Interspeech,
2012.

M.M. Hochberg, S.J. Renals, and A.J. Robinson, “Ab-
bot: The CUED hybrid connectionisttHMM large-
vocabulary recognition system,” Spoken Language Sys-
tems Technology Workshop, pp. 102-5, 1994.

A.W. Senior and F. Fallside, “Offline handwriting recog-
nition by recurrent error propagation networks,” Inter-
national Workshop on Frontiers in Handwriting Recog-
nition, vol. 93, 1993.

[13]

[14]

[15]

[16]

5643

P. Chou, “Optimal partitioning for classication and re-
gression trees,” IEEE PAMI, vol. 13, no. 4, pp. 340-354,
1991.

S. Young, J. Odell, and P. Woodland, “Tree-based state
tying for high accuracy acoustic modelling,” in Proc.
ARPA Human Language Technology Workshop, 1994.

M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,
Q.V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean,
and G.E. Hinton, “On rectified linear units for speech
processing,” in Proc. ICASSP, 2013.

B. Kingsbury, “Lattice-based optimization of sequence
classification criteria for neural-network acoustic mod-
eling,” in Proc. ICASSP, 2009.

