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ABSTRACT

This paper explores asynchronous stochastic optimization for se-
quence training of deep neural networks. Sequence training requires
more computation than frame-level training using pre-computed
frame data. This leads to several complications for stochastic op-
timization, arising from significant asynchrony in model updates
under massive parallelization, and limited data shuffling due to
utterance-chunked processing. We analyze the impact of these two
issues on the efficiency and performance of sequence training. In
particular, we suggest a framework to formalize the reasoning about
the asynchrony and present experimental results on both small and
large scale Voice Search tasks to validate the effectiveness and
efficiency of asynchronous stochastic optimization.

Index Terms— speech recognition, acoustic modeling, neural
networks, sequence training, asynchronous stochastic optimization

1. INTRODUCTION

Deep neural networks (DNNs) have become the dominant acoustic
model for speech recognition [1, 2, 3, 4, 5]. Two frameworks to
incorporate DNNs into the existing HMM-based decoder include the
hybrid [6] and tandem [7] approaches. In this paper, we focus on the
hybrid approach.

DNNs are bootstrapped using a frame-level training criterion
such as cross-entropy (CE) [1, 2, 3, 4, 5], optimizing the frame error
of isolated frames. This is mismatched with the objective of interest,
word error, which is a sequence-based criterion. Directly minimiz-
ing the word error is a hard optimization problem and thus, several
surrogates have been proposed, including maximum mutual infor-
mation (MMI) [8], minimum phone error (MPE) [9] or state-level
minimum Bayes risk (sMBR) [10]. Good gains have recently been
reported for sequence training of DNNs [10, 11, 12, 13].

Stochastic gradient descent (SGD) [14] is the most commonly
used optimization procedure for frame training of DNNs [1, 2, 3, 4,
5]. Unfortunately, optimization in SGD is an inherently sequential
process that is difficult to distribute over many machines. This in
turn poses practical challenges when scaling up to large datasets.
One approach to speeding up sequential optimization of DNNs has
been to use a GPU-based implementation [1, 2, 3, 4, 5].

It is not immediately clear how to implement sequence training
using a stochastic optimization process [12, 13]. For stable SGD op-
timization, the observations need to be randomized (shuffled) [12,
14]. This is in contrast to the computation of a gradient that is
utterance-derived, and hence sequential in nature and hard to shuffle.
Batch optimization schemes are a more natural match for this type of
objective [4, 10, 11, 15]. For a direct comparison of frame/sequence
training and to avoid adding a sequence training-specific optimiza-
tion algorithm or duplicating large parts of the GPU/CPU implemen-
tation, we would like to retain the parallelization (and as a result the

scalability to large data sets) that we obtain from using our DistBe-
lief software framework [16, 17, 18]. In particular, retaining good
scalability through parallelism inevitably brings asynchrony. Fig. 1
depicts the extended version of the architecture adopted here.

Asynchronous stochastic optimization has been used before
for sequence training, although in a rather limited and controlled
way [12]. Overall, it is an emerging, poorly understood topic. In
particular, the authors are not aware of an explicit study of the
tradeoffs related to:
• Parameter asynchrony (gradient computations take time dur-

ing which the model parameters change in the parallelized
optimization), and

• Data shuffling (gradient computations are per utterance which
limits data randomization).

This paper addresses these two issues and provides an empiri-
cal study (Section 4) of asynchronous stochastic optimization in
DistBelief (Section 3) for sequence training of DNNs (Section 2).
Furthermore, the proposed optimization algorithm is shown to use
an auxiliary function, which allows for generalized Expectation-
Maximization optimization under certain assumptions (Section 3.3).
The conclusions can be found in Section 5.

2. DEEP NEURAL NETWORKS IN ASR

Let X = x1, . . . , xT denote a sequence of T feature vectors and W
a word sequence. According to the HMM assumption, the probabil-
ity for acoustic models is decomposed as follows:

p(X|W ) =
∑

s1,...,sT∈W

T∏
t=1

p(xt|st)p(st|st−1),

where the marginalization is over the HMM states s1, . . . , sT rep-
resenting the given word sequence W . In the hybrid modeling
approach, the emission probability is represented as p(x|s) =
p(s|x)p(x)/p(s) (Bayes rule). The state posterior p(s|x) is esti-
mated with a static classifier such as a DNN [1, 2, 3, 4, 5]. The
state prior p(s) is the relative state frequency. The data likeli-
hood p(x) does not depend on state s and thus can be ignored for
decoding/lattice generation and forced alignment [6]. The model
parameters θ comprise the DNN weights and biases, estimated by
maximizing the cross-entropy (CE) on all utterances u and frames t

FCE(θ) =
1

T

∑
u

Tu∑
t=1

∑
s

lut(s) log pθ(s|xut). (1)

Here, T =
∑
u Tu is the total number of frames. The targets are

set to lut(s) = δ(s, sut) for fixed state alignments su1, . . . , suTu ,
where δ denotes the Kronecker delta.

An example of a training criterion for sequence training is max-
imum mutual information (MMI) [8]:

FMMI(θ) =
1

T

∑
u

log
pθ(Xu|Wu)κp(Wu)∑
W pθ(Xu|W )κp(W )

. (2)
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For sequence training, a weak language model (here, a unigram lan-
guage model) is used and κ, the reciprocal of the language model
weight, is attached to the acoustic model. The logarithm diverges if
the argument goes to zero, i.e., if the correct word sequence has zero
probability in decoding. To avoid numerical issues with such utter-
ances, we use the frame rejection heuristic described in [13], i.e.,
discard frames with state occupancy close to zero, γ(den)

ut (s) < ε
(here, ε = 0.001). No regularization (for example, `2-regularization
around the initial network) or smoothing such as the H-criterion [12]
is used in this paper as there is no empirical evidence for overfitting.

In contrast to CE, which optimizes a frame-level criterion, se-
quence training optimizes a cost function reflecting the quality of
the overall recognition process given the whole utterance context.
Though there are training criteria that are better correlated with test
word error than MMI [11, 13], in this paper we shall focus only on
MMI.

The gradient of the training criterion can be written as

∇FMMI(θ) =
1

T

∑
u

Tu∑
t=1

∑
s

κ[γ
(num)
θ,ut (s)− γ(den)

θ,ut (s)]×

∇ log pθ(s|xut)

where γ(num/den)
θ,ut (s) denotes the numerator/denominator state oc-

cupancy for utterance u and frame t [10, 12, 13]. Using chain
rule terminology, we shall refer to κ[γ

(num)
θ,ut (s) − γ

(den)
θ,ut (s)] and

∇ log pθ(s|xut) as the outer and inner gradients, respectively. The
outer gradient is similar to the targets lut(s) in Eq. 1, with the im-
portant difference that the outer gradient depends on the model pa-
rameters θ while the targets are independent of θ. As a consequence,
unlike the CE targets, the outer gradient cannot be pre-computed.
Moreover, while the outer derivatives can be negative and sum up
to zero, the CE targets are assumed to be non-negative and sum up
to one. Given the sequence training outer derivatives encoded as
targets, the inner gradient is computed by back-propagation in the
same way as the gradient for FCE(θ). For a single, synchronous
parameter update (the case for SGD or batch optimization), the
gradient is exact. For ASGD, however, the gradient will only be
approximate as we cannot update the outer gradients over multiple
parameter updates; see the more formal discussion in Section 3.3.
In terms of the implementation (Section 3), the computation of the
outer and inner gradients is mapped to the Speech and DistBelief
modules, respectively (see Fig. 1).

3. ASYNCHRONOUS SGD & DISTBELIEF

This section briefly summarizes asynchronous SGD (ASGD) in the
DistBelief framework [16, 17] as used for sequence training, with
special focus on data shuffling (Section 3.1) and asynchrony issues
(Section 3.2 and Section 3.3).

The basic architecture for DistBelief is as follows. We partition
the training data into a number of subsets and run training with a
replica of the model for each of these subsets. Models periodically
update their model parameters by requesting fresh values from the
parameter server, which maintains the current state of all model pa-
rameters, distributed across many machines (see Fig. 1). The models
send parameter updates to the parameter server after each gradient
computation. In addition, in our implementation, sequence train-
ing runs an independent decoder in the input layer of each model
to generate on-the-fly lattices, and then computes the outer gradient.
The decoders request fresh values from the parameter server to avoid
stale outer gradients.

DistBelief

Model 
Replicas

Utterances

Frames

Speech
Decoders

Parameter Server

Fig. 1. Asynchronous SGD: Model replicas asynchronously fetch
parameters θ and push gradients ∆θ to the parameter server. The
speech decoders independently and asynchronously fetch the param-
eters θ.

The next subsections address the shuffling and asynchrony is-
sues in more detail. Shuffling and asynchrony are not independent
issues, and in practice a reasonable tradeoff needs to be found. (In
general, more shuffling implies more asynchrony).

3.1. On-the-Fly Shuffling
It is a well-known fact that the shuffling of training data for SGD
has a significant impact on efficiency and performance. A loss in
performance usually is observed when employing SGD with incom-
pletely shuffled data, for example, a 7% relative loss in WER is re-
ported in [12]. DistBelief and ASGD allow for better shuffling when
processing utterances, since many utterances are being processed in
parallel by different model replicas. Our approach to shuffling is
illustrated in Fig. 2. The batch size N is constant. Each slot in
the batch loads a separate utterance and processes the frames within
an utterance one by one. When all frames of an utterance are con-
sumed, another utterance is loaded. Shuffling primarily derives from
two separate aspects of the setup: (1) using batches of frames from
different, random utterances, as just described, and (2) running mul-
tiple model replicas independently and asynchronously on different
subsets of utterances.

utterance 1

utterance 2

utterance N

... ba
tc

h

Fig. 2. On-the-fly shuffling for each model replica. A batch contains
one frame from each of N utterances.

3.2. Asynchrony
The DistBelief approach sketched in Fig. 1 is fundamentally asyn-
chronous in several aspects: the model replicas, parameter server
shards and decoder all run independently of each other. Since de-
coding, forced alignment, and forward/backward pass to compute
the outer and inner gradients take time, gradients are typically com-
puted using stale and even inconsistent model parameters. For evalu-
ation, additional model replicas are run to compute the statistics. The
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degree of asynchrony depends on the number of model replicas and
the batch size, and can be significant. For 50 replicas, the average
staleness of the outer gradients is around one minute, corresponding
to a few hundred DNN update steps.

3.3. Auxiliary Functions
The use of an auxiliary function allows more formal reasoning and
justification of the use of ASGD optimization for sequence training.
Auxiliary functions are approximations to the original training ob-
jective that are simpler to optimize. Here, “simpler” means that the
auxiliary function looks like a frame-level training criterion (e.g.,
Eq. 1) that can be (partially) optimized with a stand-alone tool such
as DistBelief. The optimization of the total training criterion is per-
formed iteratively by updating the auxiliary function at the current
parameter estimate θ′ and optimizing the auxiliary function to obtain
a new estimate θ. Auxiliary functions can make tangential contact
with the training criterion at θ′ or lie in the hypograph of the training
criterion in addition [9, 19], see Fig. 3. The first type of auxiliary
function is easy to construct, although little can be said about con-
vergence. Constructive and efficient lower bounds are harder to find
but lead to generalized Expectation-Maximization [19, Chapter 9.4],
with stronger convergence properties, in particular convergence to a
local optimum. Generally speaking, the tangential contact is only

T(θ,θ')

θθ'

F(θ)-F(θ')

θθ'

F(θ)-F(θ')

B(θ,θ')

Fig. 3. Auxiliary function T making tangential contact with the
training criterion F at θ′ (left) vs. lower bound B for F at θ′.

locally valid and requires frequent updates of the outer gradient to
guarantee stable convergence. In contrast, a lower bound is glob-
ally valid and expected to be less sensitive to frequent updates of the
outer gradient.

We use the following auxiliary function for FMMI (Eq. 2)

TMMI(θ
′, θ) =

1

T

∑
u

Tu∑
t=1

∑
s

lθ′,ut(s) log pθ(s|xut)+FMMI(θ
′)

with lθ′,ut(s) = κ[γ
(num)
θ,ut (s)− γ(den)

θ,ut (s)] to enforce
∇TMMI(θ

′, θ)|θ=θ′ = ∇FMMI(θ)|θ=θ′ .
Here, the key assumption is that the outer gradient changes more

slowly than the inner gradient; see “Fetch interval”, Section 4.2, for
an empirical evaluation of this assumption. More details and re-
finements on this topic can be found in [20], including converting
a tangential contact into a lower bound [20, Chapter 6.2.2] or an
alternative tangential contact with better qualitative properties [20,
pp.118].

4. EXPERIMENTS

An empirical study of ASGD for sequence training was conducted
for a small and a large Voice Search task [21]. The small size of the
Icelandic dataset allows for a thorough evaluation of the different
issues and hyper-parameters while the large scale English dataset
demonstrates the scalability of the algorithm.

4.1. Dataset & Setup
The training and test datasets consist of 90,000 utterances/360,000
word tokens/60 hours and 10,000 utterances/38,000 words/6 hours,
respectively. They were recorded under the same conditions.

The DNN setup is based on that in [4, 18]. The input for the
DNN is 26 contiguous frames (20 on the left and 5 on the right) of
40-dimensional log-filterbank features. The DNN consists of four
hidden layers each of 1,024 nodes with linear rectifier activation
(ReLUs), and an output layer with softmax activation representing
the 2,400 context-dependent states from the baseline GMM model.
The baseline DNN system is boosted by transfer learning from a
DNN with the same topology for English [18]. The baseline DNNs
are bootstrapped with CE training using alignments from a standard
HMM-based system with discriminatively trained Gaussian mixture
models (GMMs).

Sequence training is initialized by copying the ReLU weights
of this DNN baseline. The lattices are generated during training us-
ing the current DNN estimate and a unigram language model based
on the training vocabulary with 29,000 words. On-the-fly decod-
ing/alignment improves the overall stability of training, as it helps
to avoid issues with convergence, heuristics such as when to up-
date the lattices and alignments [12, 13] or special treatment for
silence [12]. The training criterion is MMI, as described in Sec-
tion 2. Most frames are correctly classified and the numerator and
denominator cancel (85% for this task). These frames are not further
processed in DistBelief, which saves a considerable amount of com-
puting time. To compensate for this, the batch size is reduced from
200 (CE) to 32 (MMI).

4.2. Experimental Results
Figures 4, 5, 6, and 7 show the training criterion FMMI (Eq. 2) and
the word error rate (WER) for decoding with a unigram language
model, both computed on a held out dataset of roughly 30 minutes
from the training data, not used for training. In contrast, test WERs
in Table 1 are for regular decoding on the test dataset using a trigram
language model.

Data shuffling. First, different shuffling schemes are evaluated.
To make the benchmark harder, the network is trained from scratch.
Note that we use a stronger baseline below for MMI training, initial-
ized from an English network with matching topology. Test WERs
for this benchmark are 15.2% (no shuffling), 14.5% (on-the-fly shuf-
fling, see Section 3.1) vs. 14.4% (full shuffling). Unlike for the
shuffling scheme for the GPGPU-based implementation in [12], we
do not observe a WER difference between the two shuffling types.
Also, convergence times for the two approaches are comparable. We
observe similar results for other setups and languages.

SGD vs. ASGD. Fig. 4 compares the convergence of MMI for
SGD (1 model replica) and ASGD (10 and 50 model replicas). The
parameters are fetched at the beginning of each utterance. The learn-
ing rates (0.002 for SGD and 0.001 for ASGD) are set to the largest
value that leads to stable convergence; a larger value would lead to
unstable convergence and eventually result in divergence. The learn-
ing rate decays by a factor of 10 after the convergence curve flattens
for a while. Convergence is sped up by using more model replicas,
and is also stable for a fairly large number of model replicas.

Keeping in mind that the MMI model updates include full de-
coding passes, and that only 15% of the utterance frames are actually
passed to DistBelief due to canceling numerator/denominator accu-
mulation weights, the optimization efficiency looks reasonable: an
MMI step takes approximately twice as long as a CE step.
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Fig. 4. SGD vs. ASGD: Evolution of training criterion FMMI and
WER (unigram language model) on held out data.
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Fig. 5. Fetch interval for the decoding parameters: Evolution of
training criterion FMMI and WER (unigram language model) on
held out data.

Fetch interval. Section 3.3 shows that ASGD for sequence train-
ing uses a tangential contact, which needs to be updated frequently.
To give some measure of the stability of ASGD, we empirically de-
termine how often the parameters for the decoders need to be fetched
(referred to as the fetch interval) in order to preserve convergence.
In contrast to the other experiments, the parameter fetch here is done
synchronously across all replicas every fetch interval. Fig. 5 sweeps
the fetch interval for updating the last layer using 10 replicas and
a learning rate of 0.001. This setup allows for a fetch interval of
up to 15 minutes without losing performance (convergence speed
and value of objective), although at the expense of more noisy con-
vergence. We found that several factors can have great impact on
the maximum fetch interval (for which overall performance doesn’t
change significantly): (1) updating all layers and not only the last
layer halves the maximum fetch interval, because small changes in
the parameters are amplified when propagated through the hidden
layers, and worse, ReLUs are non-differentiable implying that small
changes can cause big changes in the outputs; and (2) not updating
the silence model [12] doubles the maximum fetch interval.

Frame vs. sequence training. According to Bayes theory, CE
training minimizes the frame error. In contrast, there is empirical
evidence that MMI is better correlated with WER than CE [8]. We
confirm this hypothesis in Fig. 6, which clearly demonstrates that
CE and MMI are opposing objectives: improving the MMI crite-
rion, starting from the CE trained DNN which is close to the optimal
frame error, significantly decreases word error and significantly in-
creases frame error.

A valid objection about the MMI gains is that the gain may
not be due to an improved training criterion but rather from (fre-
quently) re-aligning the utterances [12, 13], using numerator lattices,
performing more training updates, re-starting the training, etc. To
exclude these possibilities, we run the same setup as for sequence
training without the denominator. Both re-aligning frequently, or
only at the beginning, results in small improvements in the training
criterion, as expected, but no stable and significant changes in WER.

Updating the last layer vs. all layers. DNNs can be thought of
as a feature extraction (the hidden layers) and a classifier (the last
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Fig. 7. Updating the last layer vs. updating all layers: Evolution
of training criterion FMMI and WER (unigram language model) on
held out data.

softmax layer). This raises the question whether it suffices to only
update the classifier to tweak word error, or if all layers need to be
updated to take full advantage of sequence training. The results in
Fig. 7 suggest that for this specific setup, updating all layers tends
to be slightly better than updating only the last layer. However, this
small difference does not transfer to the test word error (10.9% WER
in either case).
Large scale task. We confirm the results on the large scale En-
glish Voice Search task: a DNN with eight hidden layers and 14,000
outputs, trained on 3,000 hours of data. The results are shown in Ta-
ble 1. Most of the gain is obtained within a few days. More remark-
able, running the training for much longer (say, two more weeks)
does not show any overfitting but rather keeps improving marginally.

5. SUMMARY & CONCLUSIONS

We investigated asynchronous stochastic gradient descent for se-
quence training of deep neural networks. For the two Voice Search
tasks, asynchronous sequence training as proposed works, and gives
up to 15% reduction in word error rate over a frame-level trained
deep neural network baseline. In particular, asynchronous stochastic
optimization leads to stable and, possibly due to improved data shuf-
fling, better convergence, and is effective and efficient at optimizing
the sequence training criterion. Moreover, we empirically found that
the optimization shows some robustness against stale model param-
eters. Although MMI is better correlated with the test word error
rate than the CE frame-level criterion, small differences on the held
out dataset for the training criterion using the weak language model
often do not carry over to the test word error rate using the trigram
language model. This shows that MMI is imperfect in terms of cor-
relation with test word error. Future work will focus on expanding
to other training criteria such as MPE and sMBR.

Table 1. Summary of test WERs for Voice Search tasks.
(training data) Icelandic (60h) English (3,000h)
CE 13.0 11.7
MMI 10.9 10.7
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