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ABSTRACT

Data augmentation using label preserving transformations has been

shown to be effective for neural network training to make invariant

predictions. In this paper we focus on data augmentation approaches

to acoustic modeling using deep neural networks (DNNs) for au-

tomatic speech recognition (ASR). We first investigate a modified

version of a previously studied approach using vocal tract length

perturbation (VTLP) and then propose a novel data augmentation

approach based on stochastic feature mapping (SFM) in a speaker

adaptive feature space. Experiments were conducted on Bengali

and Assamese limited language packs (LLPs) from the IARPA Ba-

bel program. Improved recognition performance has been observed

after both cross-entropy (CE) and state-level minimum Bayes risk

(sMBR) training of DNN models.

Index Terms— deep neural networks, data augmentation, vo-

cal tract length perturbation, stochastic feature mapping, automatic

speech recognition.

1. INTRODUCTION

A good neural network model for pattern recognition should make

predictions that are invariant to variations of the same class of pat-

terns. This is usually done by traing the neural network using a large

number of samples with abundant variations of the patterns to be rec-

ognized. However, this will pose a problem when there is only lim-

ited training data available. Under this condition, the neural network

training is at the risk of over-fitting and hurting the classification ro-

bustness. One way to deal with this problem is data augmentation

where the training set is artificially augmented by adding replicas of

the training samples under certain types of transformations that pre-

serve the class labels. Data generated under such label preserving

transformations will improve the prediction invariance and general-

ization ability of the neural networks.

Data augmentation has been widely used in neural network

based pattern recognition tasks [1][2][3][4], especially in image

recognition where transformations such as translation, deformation

and reflection [1][4] have led to significant improvements in recog-

nition accuracy. In the past few years, deep neural networks (DNNs)

have made dramatic impact in acoustic modeling and have delivered

the state-of-the-art performance in automatic speech recognition

(ASR) [5][6][7][8]. However, work related to data augmentation

for ASR based on DNNs has been rarely reported. Most recently, a

data augmentation scheme based on vocal tract length perturbation

(VTLP) was proposed in [3] and experiments on the TIMIT database

using deep convolutional neural networks (CNNs) showed decent

improvements in phone error rate (PER).

In this paper, we exploit data augmentation approaches to deal

with limited training data in deep neural network (DNN) acous-

tic modeling for large vocabulary continuous speech recognition

(LVCSR). We first investigate a modified version of VTLP proposed

in [3] and then propose a novel label preserving transformation

scheme based on stochastic feature mapping (SFM) in a speaker-

adaptive feature space to augment the training data. Experiments

were carried out on limited language packs (LLPs) of two Indian

languages, Bengali and Assamese, under the IARPA Babel program

[9].

The remainder of the paper is organized as follows. Section 2

gives the details of our implementation of VTLP and also the SFM

approach to generate transformed input features for deep neural net-

work training. Experimental results on Bengali and Assamese LLPs

under both cross-entropy (CE) training and Hessian-free (HF) se-

quence training of the hybrid DNN acoustic models are presented in

Section 3 followed by a discussion and future work in Section 5.

2. DATA AUGMENTATION

2.1. Feature Space

The data augmentation schemes to be investigated in this paper are

based on a speaker adaptive feature space whose extraction pipeline

is shown in Fig. 1. This is also the feature pipeline used by the IBM

speaker adaptive ASR systems in the Babel evaluation [10][11].

In this pipeline 13-dimensional mean-normalized perceptual lin-

ear prediction (PLP) features with vocal tract length normalization

(VTLN) [12] are used as the fundamental acoustic features. After

taking into the context (CTX) information by splicing adjacent 9

frames, linear discriminant analysis (LDA) is used to project the fea-

ture dimensionality down to 40. The components of LDA features

are further decorrelated by a global semi-tied covariance (STC) ma-

trix [13]. For implementation convenience, the two transformation

matrices from LDA and STC are combined together to create only

one transformation matrix and we still refer to this feature space as

the LDA space. In this LDA space, speaker adaptive training (SAT)

using feature space maximum likelihood linear regression (FMLLR)

(i.e. constrained maximum likelihood linear regression (cMLLR)

[14]) is applied to reduce the speaker variability.

FFT Mel Log PLP

VTLN

LDA/STCFMLLR CTX

Fig. 1. Speaker adaptive feature extraction pipeline.

In what follows, we will investigate two label preserving trans-

formations in this feature space to augment the training data.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5619



2.2. Vocal Tract Length Perturbation

VTLP was first proposed in [3] with experiments on TIMIT database

where for each utterance in the training set a warping factor α is ran-

domly chosen from [0.9, 1.1] to warp the frequency axis. Therefore,

the vocal tract length of the speaker is slightly perturbed to distort

the original speech spectrum of the utterance to create a new replica

of it.

In the IBM Attila toolkit [15], the vocal tract length warping

factor is quantized between [0.8, 1.25]. As a result, the estimated

warping factor α is an integer between [0, 20] with 10 equivalent

to the neutral warping factor 1.0. In this paper, we exploit a mod-

ified version of VTLP used in [3]. Instead of randomly selecting a

warping factor, we use a deterministic perturbation:

α 7→ {α−4, α−2, α+2, α+4} (1)

where the VTLN warping factor α for a speaker is first estimated

and then perturbed in both positive and negative directions by small

shifts (±2 and ±4) to give 4 more warping factors. The perturbed

warping factors, if they are beyond [0.8, 1.25], are clipped to 0.8 or

1.25 which corresponds to integer 0 or 20, respectively, in the Attila

implementation. The 4 warping factors after perturbation are applied

to the original speech signals to create 4 replicas of all the utterances

under the same speaker.

The reason we choose deterministic perturbation rather than ran-

dom perturbation is that speech features are not sensitive to a small

distortion of the VTL warping factor. To guarantee an effective per-

turbation, we force a relatively large step away from the original

warping factor. In addition, the speaker adaptive feature space in-

vestigated in this paper is different from that of [3]. In this feature

space, VTL is explicitly estimated and used for speaker normaliza-

tion. Based on observations of our pilot experiments, this method

appears to be more helpful than that used in [3] for our Babel tasks.

2.3. Stochastic Feature Mapping

While VTLP augments data by perturbing a speaker, we also want to

explore the possibility of augmenting data by converting a speaker’s

speech to another speaker. To that end, we attempt to answer the

following question:

Suppose there is a speaker S who speaks an utterance u with

label W which generates a sequence of features with N frames

O
(S) = {o(S)

1 , · · · ,o(S)

N } (2)

Then for another speaker B what would the sequence of features

O
(B) = {o(B)

1 , · · · ,o(B)

N } (3)

be if he/she were to speak the same utterance u under the same label

W?

Ideally, stereo data is needed for such a conversion, but unfor-

tunately it is not available in most training scenarios. Therefore in

this paper we investigate a stochastic feature mapping approach that

estimates a mapping function for the feature conversion between the

two speakers statistically.

Specializing to the speaker adaptive feature space we are using

in Fig.1, to generate the target feature sequence in the FMLLR space,

we first build a speaker dependent model for the target speaker B

in the LDA space λ
(B)
LDA

. This is done by model space maximum

likelihood linear regression (MLLR) [16] based on a regression tree

which dynamically determines the transformation granularity.

Given λ
(B)
LDA

, we want to estimate a linear transformation of LDA

feature sequence O
(S)
LDA from speaker S such that the transformed fea-

ture sequence maximizes the likelihood against model λ
(B)
LDA

:

{Ã, b̃} = argmax
{A,b}

logP
(

ÃO
(S)
LDA + b̃|λ

(B)
LDA

)

(4)

Eq.4 is simply a cMLLR problem in the LDA feature space [14].

When the linear transformation {Ã, b̃} is in place, the LDA fea-

ture sequence for the target speaker B can be obtained by

O
(B)

LDA
= ÃO

(S)

LDA
+ b̃ (5)

Assume {A(B),b(B)} is the SAT FMLLR transformation for the

speaker B in the speaker adaptive feature space in Fig.1, then we

have

O
(B)

FMLLR
= A

(B)
O

(B)

LDA
+ b

(B)

= A
(B)(ÃO

(S)

LDA
+ b̃) + b

(B)
(6)

From Eq.6 we can see that O
(B)
FMLLR, which is the converted fea-

ture sequence for the same utterance with the same label as O
(S)

FMLLR
,

is obtained by a composition of two linear transforms: One maps the

LDA features from speaker S to speaker B, and the other transforms

the mapped features from the LDA space to the FMLLR space for

speaker B. Therefore, as a label preserving transformation, it essen-

tially performs the “voice conversion” between two speakers in the

designated feature space.

The implementation details of the above SFM approach is illus-

trated in Algorithm 1.

Algorithm 1 Data augmentation by Stochastic Feature Mapping

M← number of replicas ;

S← number of speakers ;

for i← 1, · · · , S do

get speaker dependent model λi in LDA space by MLLR using

all utterances from speaker i ;

end for

for i← 1, · · · , S do

for j ← 1, · · · ,M do

randomly select a new speaker k as the target speaker ;

estimate cMLLR transformation matrix {Ã, b̃} based on

model λk of the target speaker and all utterances from

speaker i in LDA space according to Eq.4;

map all utterances from speaker i to the target speaker k

using {Ã, b̃} in the LDA feature space ;

transform mapped utterances using SAT FMLLR transfor-

mation {A(k),b(k)} of speaker k;

end for

end for

After data augmentation, multiple replicas of the original train-

ing data are created. The augmented training data (both original and

replicas) will be used for the DNN training.
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3. EXPERIMENTAL RESULTS

Experiments were carried out using the limited language packs

(LLPs) of Bengali and Assamese, two development languages from

option period 1 of the Babel program. The Bengali LLP comprises

23.8 hours of telephony data for the training data set and 20.1 hours

of telephony data for the development set. The Assamese LLP

comprises 24.3 hours of telephony data for the training data set and

20.0 hours of telephony data for the development set. Both training

data sets consist of scripted and conversational speech while the de-

velopment sets consist of conversational speech only. Specifically,

the Bengali training set is composed of 19.9 hours of conversational

data and 3.9 hours of scripted data. The Assamese training set is

composed of 20.0 hours of conversational data and 4.3 hours of

scripted data. All the data is sampled at 8 KHz. Approximately

40%-50% of the audio is speech which indicates quite limited data

for training.

Hybrid DNNs and the aforementioned speaker adaptive features

are used for acoustic models. The input to the DNNs consists of

nine frames of 40-dimensional FMLLR features generated by the

feature extraction pipeline illustrated in Fig.1. The DNNs have five

hidden layers each of which is composed of 1,024 hidden units

with a sigmoid activation function and a softmax output layer with

1,000 or 2,000 quinphone context dependent states depending on

the GMM/HMM models they are associated with. There are two

types of GMM/HMM models used in the IBM systems [10]. One

is the baseline SAT GMM/HMM with 1,000 quinphone states and

6,000 Gaussians. The other is a bootstrap and aggregation based

GMM/HMM [17][10] with 2,000 quinphone states and 120,000

Gaussians. Since the GMM/HMM models only affect the DNN

training via the alignments, there is no restructuring in this case.

The training of DNNs is carried out in three stages. The DNNs

are first initialized by layer-wise discriminative pre-training. The

state-level target labels are generated by Viterbi alignment using

some existing acoustic models. After the DNNs are initialized,

cross-entropy (CE) training is conducted at the frame level. The op-

timization in both discriminative pre-training and CE training uses

a mini-batch based stochastic gradient descent (SGD) algorithm

with frame randomization. Finally, the DNNs are further optimized

using the Hessian-free (HF) sequence training under the state-level

minimum Bayes risk (sMBR) criterion [8]. Once the HF sequence

training is over, the obtained DNNs are used to re-align the train-

ing data to refine the state-level target label and another round of

three-stage training is conducted to get the final DNN models.

For data augmentation, VTLP is implemented as described in

Sec. 2.2. Four additional replicas are created by perturbing the es-

timated VTL warping factor according to Eq.1. To make a compar-

ison, four additional replicas are also produced using SFM by ran-

domly selecting 4 new speakers from the training set. Both VTLP

and SFM only augment conversational data in the training sets of the

two languages. There are 124 speakers for the conversational data in

the Bengali training set and 138 speakers for the conversational data

in the Assamese training set.

The development sets of the two LLPs are used as test sets which

are decoded using dynamic decoders [15]. Bi-gram language models

(LMs) are used for both languages since they give the best held-out

perplexity. There are 11K words in the Bengali test dictionary and

9.4K words in the Assamese test dictionary. Note that in [3] the test

set is also augmented by VTLP based utterance transformations and

noticeable gains on TIMIT database have been observed by various

aggregation methods in the decoding process. However, we only

found very marginal gains by adding utterance variations to the test

set in some pilot experiments on Bengali LLP. In addition, the ag-

gregation of such variations in decoding significantly increased the

decoding time. So in this paper we don’t employ data augmentation

for the test sets and just run the decoding in the conventional way.

Bengali Assamese

CE sMBR CE sMBR

Baseline SAT DNN 71.1 67.6 72.2 66.7

BS SAT DNN 70.2 66.6 72.8 66.3

BS SAT DNN + VTLP 68.5 65.3 70.1 64.7

BS SAT DNN + SFM 68.4 65.4 69.9 64.1

Table 1. Word error rates (WERs) of DNN acoustic models of Ben-

gali and Assamese LLPs after cross-entropy (CE) and state-level

minimum Bayes risk (sMBR) sequence training.

Table 1 shows the performance of the hybrid DNN acoustic

models of Bengali and Assamese LLPs with and without data aug-

mentation. Word error rates (WERs) of both frame-level CE training

and sequence level sMBR training are presented. The first two

rows of Table 1 are the DNN models without data augmentation.

DNN models based on the bootstrapped SAT GMM/HMM (BS SAT

DNN) improve WERs over the baseline SAT DNNs (1.0% absolute

for Bengali and 0.4% absolute for Assamese after sMBR sequence

training) mainly due to its larger number of output states via data

resampling and aggregation and better alignments for the targets.

In the last two rows of the table, VTLP and SFM are applied on

the BS SAT DNN models. By adding 4 replicas of the transformed

conversational data to the original training sets, VTLP obtains 1.7%

absolute improvement after CE and 1.3% absolute improvement af-

ter sMBR sequence training over BS SAT DNN models for Bengali;

2.7% absolute improvement after CE and 1.6% absolute improve-

ment after sMBR sequence training over BS SAT DNN models for

Assamese. Similarly, SFM obtains 1.8% absolute improvement af-

ter CE and 1.2% absolute improvement after sMBR sequence train-

ing over BS SAT DNN models for Bengali; 2.9% absolute improve-

ment after CE and 2.2% absolute improvement after sMBR sequence

training over BS SAT DNN models for Assamese. If compared

to the baseline SAT DNN models, the best improvement by boot-

strap/aggregation and data augmentation is 2.3% and 2.6% absolute

after sMBR sequence training for Bengali and Assamese, respec-

tively.

From the data augmentation perspective, as observed from Ta-

ble 1, VTLP and SFM have comparable performance after sMBR

sequence training on Bengali while SFM is 0.6% absolute better

than VTLP after sMBR sequence training on Assamese. If we in-

crease the number of replicas, VTLP tends to saturate or slightly

degrade while SFM continues to improve. This is demonstrated in

Table 2 which shows the CE WERs of Bengali DNN models using

data augmentation by VTLP and SFM generating different numbers

of replicas. In this table, 8 replicas of data are generated by VTLP

using denser perturbation, namely {±1,±2,±3,±4}, of the current

speaker’s VTL warping factor. As a result, the performance does not

improve after CE training with more augmented data. It actually de-

grades slightly from 68.5% to 68.8%. This is because acoustic fea-

tures are not sensitive to small distortions to VTL warping factors.

Given the range of warping factor (usually [0.8, 1.2]), we can imag-

ine that VTLP will plateau if we keep adding new data by perturbing

in this range for one speaker. Nevertheless, SFM does not appear to

have this problem as long as we have a good diversity of speakers.

This can explain why its performance can still keep improving when

increasing the transformed data from 68.4% to 68.0%.
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VTLP SFM

4 replicas 68.5 68.4

8 replicas 68.8 68.0

Table 2. Word error rates (WERs) of DNN acoustic models of Ben-

gali LLP after cross-entropy (CE) training using data augmentation

by VTLP and SFM with different numbers of replicas.

4. RELATION TO PRIOR WORK

Although following the same concept of improving the prediction

invariance of neural networks, data augmentation in speech recogni-

tion for DNN based acoustic model training is quite different from

that in other pattern recognition tasks, such as image recognition

[4][1][2], since the ways the features are extracted are so different.

This paper is motivated by [3] which has shown promising data

augmentation results on ASR using VTLP. We want to extend VTLP

to LVCSR tasks such as ASR in the Babel program and have in-

vestigated a modified version of VTLP. That is, instead of randomly

choosing a warping factor for each utterance of a speaker, we deter-

ministically perturb the estimated VTL warping factor of a speaker.

We also proposed a novel data augmentation approach based on SFM

for utterance transformation. SFM estimates a maximum likelihood

linear transformation in some feature space of the source speaker

against the speaker dependent model of the target speaker. Differ-

ent from VTLP which perturbs a speaker, SFM explicitly maps the

features of a speaker to some target speaker based on a statistically

estimated linear transformation.

5. DISCUSSION AND FUTURE WORK

Inspired by voice conversion, stochastic feature mapping is a label

preserving transformation that augments the training data for neural

network models by mapping speech features from a source speaker

to a target speaker. It does not create new speaker information, but

rather generates more acoustic context/variation information (from

the utterance labels of the source speaker) for the target speaker that

does not exist in the original training data.

SFM performs equivalent “voice conversion” in some desig-

nated feature space in the sense of stochastic mapping. The acoustic

information of the target speaker is contained in his/her speaker

dependent model. The mapping between the two speakers is sta-

tistically estimated so it does not rely on any particular spectral

manipulation. Although in this paper we describe the mapping in

the speaker adaptive feature space for the IBM systems as an exam-

ple, SFM as a transformation approach in general can be applied to

any feature space for the data augmentation purpose.

Given that VTLP attempts to perturb the VTL of a speaker him-

self/herself while SFM attempts to map the acoustics of the speaker

to another speaker, the two approaches might be complementary. In

fact, some of our pilot experiments at the CE stage have shown pos-

itive evidence to support this speculation. The combination of the

two approaches for better data augmentation performance in under

investigation.

Although data augmentation is most helpful for neural network

training when the training data is limited, as indicated in the ex-

perimental results of the Babel limited language packs in this pa-

per, we also would like to explore its effectiveness when the training

data is relatively ample, for instance, the Babel full language packs

which have around 200 hours of data and approximately 100 hours

of speech.
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