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ABSTRACT

The recent boom in use of speech recognition technology has
made the access to potentially large amounts of training data
easier. This, however, also constitutes a challenge in process-
ing such large, continuously growing amount of information.
Here we present a stochastic modification of traditional itera-
tive training approach which leads to the same or even better
accuracy of acoustic models and reduces the cost of process-
ing large data sets. The algorithm relies on model updates
from statistics collected on randomly selected subsets of train-
ing data. The approach is demonstrated on maximum likeli-
hood (ML) training and on discriminative training (DT) with
minimum phone error (MPE) objective function both in the
feature and the model space. Based on our experiments on 30
thousand hours of mobile data, the number of data passes can
be reduced to 1/5 of the original for ML training and to 1/10
for model space DT training.

Index Terms— Acoustic modeling, Speech recognition,
Stochastic training, Discriminative training

1. INTRODUCTION

Building acoustic models from large data sets has been shown
to benefit the accuracy of speech recognition systems. The re-
cent boom in use of speech recognition technology has made
the access to very large quantities (several thousands of hours
of audio) of training data easier, but also constitutes a chal-
lenge in processing large and continuously growing amount
of information. While the recent advances in using Deep
Neural Networks (DNNs) [1] have taken some of the spot-
light away from training traditional Gaussian Mixture Models
(GMM) for Hidden Markov Model (HMM) states, the speed
of training such systems still has an important role in build-
ing speech systems. For example, in one commonly practiced
acoustic modeling approach, DNNs are trained to generate
so-called bottleneck features which are then used in GMM
HMM training [1]. Therefore, any advances in speeding up
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GMM training will still have a significant impact in building
speech systems.

A traditional training procedure for a GMM-based acous-
tic model encompasses finding optimal parameters of the
GMM for each HMM state. This can be done in several steps.
The reference training used in this paper would first set Max-
imum Likelihood (ML) as a training criterion and iteratively
look for an optimal solution for each of the HMM states [2].
The training procedure continues with discriminative training
(DT) in the feature space followed by DT in the model do-
main. In both cases a Minimum Phone Error (MPE) objective
function is used as a training criterion for larger training data
sets [3]. Both the ML and the DT procedures require multiple
passes through the entire training data set, which takes several
days to complete.

As the amount of available training data has grown dra-
matically in the recent years, the processing times for the tra-
ditional training approach have become prohibitively large.
The need has shifted from developing algorithms capable of
training acoustic models from a small available training set to
exploiting large amounts of available data.

In this paper we present a stochastic modification of tra-
ditional iterative training approach, which leads to the same
or sometimes even better accuracy of acoustic models while
reducing the cost of processing large data sets by requiring
fewer passes through the training data. Our goal is to opti-
mize the model parameters just on a subset of available data
while making the most of existing state-of-the-art training al-
gorithms. Therefore the approach is demonstrated on ML
training and on DT with MPE objective function both in the
feature and the model space.

1.1. Relationship to Prior Work

Variants of expectation-maximization (EM) algorithm such as
incremental EM [4] have been used to achieve faster conver-
gence of ML training. Similar efforts have been done in DT,
however mainly with Minimum Classification Error as an ob-
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jective function, not MPE we refer to. The work focuses on
better generalization of models [5, 6, 7] potentially allowing
training on a subset of training data or on faster convergence
of the training algorithms employing various online and batch
probabilistic techniques [8, 9, 10].

2. ALGORITHMS

2.1. Maximum Likelihood (ML) Training

The goal of the Maximum Likelihood Training is to find the
model parameters which maximize the acoustic data likeli-
hood given the reference word strings [2]. Baum-Welch re-
estimation algorithm uses Estimation-Maximization (EM) al-
gorithm to find the optimum of an auxiliary function w.r.t.
model parameters. Note that the convergence points of the
EM procedure correspond to local maxima of the likelihood
function, not the global maximum [4]. With the stochastic
approach we hope to steer along the likelihood surface so
that frequent updates of parameters using random subsets of
training data will make the algorithm converge faster with re-
spect to the number of full data passes (FDP). Additionally,
we hope to make the algorithm more robust against getting
stuck in a local optimum with a consequent gain in model
accuracy.

The BW algorithm runs two steps per EM iteration. First,
statistics needed for parameter estimation are collected on the
provided data set. Next, model parameters are updated [2].
The traditional implementation uses the entire training set to
collect the statistics and the model parameters would be up-
dated from statistics collected in the last iteration only [2].

2.2. Feature and Model Space Discriminative Training
(DT)

The discriminative training investigated here uses MPE cri-
teria as an objective function both in feature space [3] and
model space [11]. The optimization is done with the Extended
Baum-Welch re-estimation where two sets of statistics are ac-
cumulated [12]; the so-called numerator statistics using the
reference word strings and denominator statistics from com-
peting hypotheses.

2.3. Stochastic Modifications of ML and DT Training

Our stochastic training approach follows a simple modifica-
tion of the traditional training method: rather than gather-
ing statistics on entire training data set and then carrying out
model parameter update, we gather statistics on a randomly
selected subset of the training data and update model param-
eters. Our procedure is parametrized by using the following
training criteria: (1) how much data was selected into a train-
ing subset, (2) whether single or multiple iterations should be
carried out on selected subset before moving on to next sub-
set, (3) what method was used for data selection, (4) whether

statistics collected in previous iterations should be used for
model parameters update, and if yes, then (5) what kind of
smoothing if any should be applied.

Pseudo-code for traditional approach to the training is
shown in Algorithm 1, while a stochastic variant reflecting
the above set parametrization is illustrated in Algorithm 2.

initialize \

{wi,wa, ..., WpNum} < {1/bNum,...,1/bNum}

fori < 1,2,... tradlter do

{sts1, stsa, ..., stsyNum}  ACCU(tradData)
sts <~ MERGE(sts1, stsa, ..., StSpNum,
Wi, W2, . ., WpNum)
A < UPDATE(, sts)
end for

Algorithm 1: Traditional Training. A represents model pa-
rameters, tradlter is the number of traditional training itera-
tions for given task, tradData is the total amount of training
data, bNum is the number of unique batches (i.e. training
data subsets) to be used in the training.

initialize A
stochlter < tradlter x tradData/RBS

forn < 1,2,... ,bNum do > Batch generation
by, <+ SAMPLE(tradData, RBS, level)
end for

fori <+ 1,2,...,stochlter do
b; < itr2batch(i)
stsiq < ACCU(b;)
sts — MERGE(sts1, stsg ..., stSid, . .
w1, W2, . .
A < UPDATE(, sts)
end for

> Stoch training

L) StSbNuma
L) waum)

Algorithm 2: Proposed stochastic approach to the training.
Here )\ represents model parameters, tradlter is the number
of traditional training iterations for given task, tradData is
the total amount of training data, RBS is the requested batch
size, and bNum is the number of unique batches (i.e. training
data subsets) to be used in the training.

For example, one can decide that the training data set of
tradData = 30000 (hours) should be sampled to generate
bNum = 60 data subsets of RBS = 500 (hours) each.
The order in which the batches are processed is then prede-
fined in ¢tr2batch which corresponds to training criterion
(2) and keeps record of which batch gets processed at which
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algorithm iteration. In Algorithm 2 SAMPLE is an imple-
mentation of criterion (3) and generates subsets of training
data by randomly sampling the full set at the speaker or the
utterance level to produce a data batch of requested size.
MERGE merges statistics sts; with respective weights w;
implementing training criteria (4) and (5), and finally AcCu
stands for parallelized statistics accumulation (identical to
respective traditional method) on given data, and UPDATE
updates model parameters A using provided statistics sts.

3. EXPERIMENTS

3.1. Setup

Two sets of training data were used for presented experiments,
one set with approximately 3000 hours and a second one with
30000 hours of US English search and messaging data cap-
tured from mobile phones. The test data was obtained from
similar environment and topic domains as the training set.
The reason for choosing two different sized training sets was
to compare the effectiveness of proposed training strategies
on both small and large training sets.

3.2. Results

Table 1 below shows the reduction in FDP and training time
for the traditional and the most beneficial of various stochas-
tic training approaches. Please note the reduction in training
time is not always equal to reduction in necessary FDPs as the
stochastic variant of the training requires more computational
overhead.

Table 1: Reduction in full data passes (FDP) and training
time (TT) for stochastic variants of respective trainings with
no effect on model performance.

Stochastic vs | FDP Reduction | TT Reduction
Traditional

ML 3k 67% 40%

ML 30k 77% 70%
FMPE 3k 43% 35%
FMPE 30k 58% 50%
MPE 3k 50% 46%
MPE 30k 92% 92%

3.2.1. ML

Experiments were performed with both 3K and 30K data. We
were able to achieve a reduction in total number of FDPs with
a concomitant decrease in training time for both train sets.
With 3K hours, the amount of FDPs was reduced from 15 to 5
which corresponded to a real-time reduction of training time
of about 40%. For the 30K hour case, the FDPs decreased
from 15 to 3-4, which reduces the time to train to 1/3 of the
original. Figure 1 shows results for different batch sizes.

The stochastic training setup that worked best for ML (cf.
Section 2.3):

1. Batch size (RB.S) = 500 hours.

2. Each iteration collects statistics on a fresh batch, ie
itr2batch = {0,1,2,3,...}.

3. Random data sampling at the speaker level.

4. Process accumulated statistics as in traditional algo-
rithm, ie Wy—itr2paten(i) = 1 and Wy itrapaten(iy = 0-

Interestingly, if the batch size is set smaller, to about 50
hours, the setup for training criteria (4) and (5) was no longer
valid and the training benefited from reusing the statistics ac-
cumulated in previous iterations up to the size of the original
training data (3k trainings, data not shown). The smoothing
weights w; were chosen to be proportional to the batch size.

ML 30k Web Search

\ \ \ \
ML —e—

stoch ML (10 batches) =-=--X--- _|
s}och ML (60 batch‘es) ... + .-

Relative Word Error Rate (%)

Number of Full Data Passes (-)

Fig. 1: The number of stochastic batches can lead to different
performance in terms of full data passes vs. error rate. Please
note the visible stagnation in likelihood improvement at the
beginning of a training is due to GMM splitting, an operation
not related to the topic of this paper.

3.2.2. fMPE

As shown in Table 1, fMPE training also benefited from
using stochastic training techniques. Same accuracy can be
achieved using about 58% less number of full data passes for
the 30K hour case and about 43% less for 3K hour training.
Figure 2 illustrates improved accuracy of traditionally vs.
stochastically trained models for tested number of full data
passes.
The setup that worked best for fMPE (30K):

1. Batch size (RB.S) = 15k hours.

2. Use identical batch for 4 consecutive iterations, ie
itr2batch = {0,0,0,0,1,1,1,1,2,2,2,2,...}.
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3. Random data sampling at the speaker level.

4. Process accumulated statistics as in traditional algo-
rithm, ie Wn=itr2batch(i) = 1 and Wn£itr2batch(i) = 0.

5. Do not transform the features when switching to a new
batch, i.e. run the algorithm as if it was the first tradi-
tional iteration [3].

3.2.3. MPE

The story for model space training is similar to ML and fMPE,
with an additional (if unexpected) result. We see that for
MPE, the accuracy of the traditional model is reached very
quickly, in about a quarter of an FDP for the 30k hour data,
leading to training times reduction of 92%. For 3k hours, the
reduction of necessary FDPs is 50% with corresponding re-
duction of 46% in training time.

fMPE, 30k Web Search

\ \ \ \
| fMPE —&—

. stoch fMPE _ =--y---

Relative Word Error Rate (%)

\
0 2 4 6 8 10 12

¥y |

Number of Full Data Passes (-)

Fig. 2: Relative word error rate of traditionally trained and
stochastically trained fMPE models. The number of iterations
is limited to 11 iterations in our production training due to the
cost of the fMPE procedure.

The stochastic training setup that worked best for MPE
(30K) was:

1. Batch size (RB.S) = 15k hours.

2. Each iteration collects statistics on a fresh batch, ie
itr2batch = {0,1,2,3,...}.

3. Random data sampling at the speaker level.

4. Process accumulated statistics as in traditional algo-
rithm, ie Wn=itr2batch(i) = 1 and Wn#itr2batch(i) = 0.

In addition, we also observed that if we continue stochas-
tic training past the accuracy equivalency point, we can
achieve small improvements in accuracy. We were skepti-
cal at this discovery since we have seen in the past that this
could be attributed to a speed versus accuracy shift (improved

performance of the model in terms of accuracy vs. associated
increase in run time of the decoding process). In order to
ascertain if this was the case, a series of experiments with
an FST decoder was carried out which allowed for various
beam settings in order to measure accuracy vs. real time
factor (RTF) characteristics of tested model for given task
and decoding setup. The result of this experiment is shown in
Figure 3 for a combination of fMPE and MPE trainings. In
this plot, we see that, for all levels of RTF, the models trained
from stochastic MPE and fMPE are always more accurate
than the one trained with traditional training.

MPE, 30k Web Search

0 FaY
I [ I
i trad fMPE + trad MPE ——
S trad fMPE + stoch MPE  ===X==-- |
o stoch fMPE + stoch MPE === =---
< ; ‘ ; : :
& =2 N .
i ; i
B | )
g -
° | |
2 ; ;
g -
o« :-!-.. :
5 \ [ N \
1.4 1.6 1.8 2 2.2 2.4 2.6

Real Time Factor (-)

Fig. 3: Real time factor vs. Relative word error rate char-
acteristics of a model trained with traditional MPE algorithm
on top of traditionally trained fMPE model, an MPE on top of
fMPE mode, both stochastically trained.

4. CONCLUDING REMARKS

The main motivation for this work was to improve the speed
of training GMM HMM acoustic models, especially with
large amounts of training data. Experiments have shown that
proposed techniques work well when training with larger
amounts of data. We typically see a decrease in passes
through the training data of 30-50% while maintaining the
same model accuracy. As expected, the impact of stochastic
approach increases with larger training data amounts. For
30k hr training data, we saw decreases in training time of
70% for ML training, 50% for fMPE and even 91% for MPE.
Moreover we observed that we could also achieve improved
accuracy if we let the training continue to the same levels (in
time) as traditional training.
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