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ABSTRACT

‘We describe a simple modification of neural networks which consists
in extending the commonly used linear layer structure to an arbitrary
graph structure. This allows us to combine the benefits of convo-
lutional neural networks with the benefits of regular networks. The
joint model has only a small increase in parameter size and training
and decoding time are virtually unaffected. We report significant im-
provements over very strong baselines on two LVCSR tasks and one
speech activity detection task.

Index Terms— Acoustic Modeling, Neural Networks, MLP,
CNN

1. INTRODUCTION

While until recently most LVCSR systems were based on Gaussian
mixture models (GMM)), in the last two years many research groups
have seen substantial improvements when switching to neural net-
work acoustic models. The renewed interest in neural networks was
sparked by the work of Microsoft [1] where a context dependent
neural network outperformed a good GMM baseline on the SWB
(Switchboard) task. While the work in [1] used multi layer percep-
trons (also called deep neural networks now), other types of neural
Nets have become popular as well, such as convolutional neural net-
works (CNN) [2].

The idea of a CNN is to generate shift invariance to make the
model more robust against small changes in the input space and was
already discussed by Rumelhart in [3]. He proposed a network that
uses only a subset of inputs in the form of localized receptive fields.
That network was designed to discriminate between the letters "7
and ”C” and to be invariant to translation. In order to achieve shift
invariance, the weight learning was changed such that the weight
changes were averaged over the receptive fields. For speech recog-
nition problems, invariance against small changes in the temporal
domain is important. A time delay neural network (TDNN) [4] ap-
plies weight sharing and shift invariance in the temporal domain on
a phoneme classification task and performed better than an HMM
baseline. Weight sharing and shift invariance in the feature domain
was first explored in [5], which used log-mel features as input fea-
tures on a small scale speech task. The work in [6] demonstrated that
these ideas also work for larger tasks (Broadcast News and Switch-
board).

If CNNs are configured to obtain shift invariance in the feature
domain, it places certain constraints on the type of features that can
be used. Applying a maximum or average operator on the outputs of
localized windows is meaningful only if the features are topograph-
ical. For example, log-mel features, which are used in [5], have this
property. On the other hand, considerable progress has been made by
using more elaborate feature processing for GMM systems. These
features can be used directly for regular MLPs and are known to
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improve results. This motivates our work, where we want to com-
bine the benefits of a CNN (shift invariance) with the benefits of a
conventional MLP that can use more advanced features.

Our model is a simple extension of a regular neural network, de-
scribed in section 3. We compare the performance of our models on
two LVCSR tasks. The first set of experiments are done on SWB, a
well understood LVCSR task, in section 4. The second task, RATS
(Robust Automatic Transcription of Speech), features challenging
noisy conditions for multiple languages (section 5). We report re-
sults for two RATS sub-tasks, namely keyword search and speech
activity detection.

2. RELATED WORK

Closest to our work is the work described in [7], which mentioned
a combination of MLPs and CNNs. They reported small improve-
ments (18.9% to 18.6% WER) while almost doubling the parameter
size.The difference with our work is that our model is configured
such that most layers are shared between the MLP and the CNN and
that we do not restrict our model to have the same input features
for both MLP and CNN. Indeed, in some preliminary experiments
we found that log-mel features are substantially worse than FMLLR
features for MLPs and placing the same restriction for MLP features
that are used for CNN features will lead to suboptimal results.

Combining the benefits of different models or different features
can also be seen as a form of system combination. While our work
focuses on neural nets, combining different feature streams was al-
ready explored for GMM systems. For example, the authors in [8]
combined MLP based posterior features with traditional MFCC fea-
tures for a GMM based LVCSR system. More recently, [9] showed
improvements from combining different NN derived features with a
GMM system.

In [10], we experimented with combining different features
(FMLLR,FMMI,log-mel,FDLP) for MLP-based acoustic models.
While we observed improvements on a 50h Broadcast News task,
the gains disappeared when scaling up to more training data and
larger models. In contrast to these feature combination approaches,
we propose a model that allows us to train different types of neural
nets jointly.

3. MODEL

While a regular MLP (or CNN) is normally a linear sequence of
layers, our model consists of a graph structure of layers. Each layer
can receive inputs from multiple layers, and each layer can send its
output to multiple layers. The difference with a conventional MLP
is minimal: in the forward pass, the outputs of all input layers have
to be combined (joined). In the backward pass, the gradients of all
output layers have to be summed up before back-propagating the
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Fig. 1. Joint MLP/CNN model. The matrix dimensions of the
weights are marked inside the boxes. The size of the inputs for each
layer are marked next to the arrows. The non-convolutional inputs
are 40-dim FMLLR features in a context window of 11 frames. For
the convolutional part, 40-dim log-mel features are used together
with their A’s and AA’s in a context window of 11 frames.

gradient. The graph structure is not restricted to the hidden layers
only, the models also allows for multiple input features and outputs.

An example of such a network is shown in Figure 1. In this case,
the network consists of two convolutional layers (right side) and a
non-convolutional layer (left side) that share four hidden layers plus
the output layer.

In the following, we list the benefits of a graph-structured neural
network.

3.1. Joint training of MLPs and CNNs

For a conventional MLP, it is easy to use multiple input features by
simply combining the feature matrices into one single input matrix.
This is not the case for CNNs. CNNs achieve shift invariance by ap-
plying a pooling operation of the output values. In order to achieve
shift invariance in the feature domain, the features have to be ro-
pographical, such as log-mel features. On the other hand, state-of-
the-art GMM and MLP based systems make use of more advanced
speaker adaptive features such as FMLLR or fMMI features. These
features are not topographical and therefore can not be used with a
CNN. The neural network graph structure allows us to use such fea-
tures by having CNN and MLP layers in parallel as shown in Figure
1. Since most layers are shared, the joint MLP/CNN configuration
shown in Figure 1 has only about 10% more parameters than the
corresponding CNN.

3.2. Multi-GPU usage

Another advantage of the graph structure is that we can split one
layer into n parallel parts (striping) [11]. For example, a 2048 x 7000
output layer can be split into two 2048 x 3500 layers (in parallel).
Each matrix multiplication can run in parallel on separate devices.
Combining the output of each layer is simply a cudaMemcpy2D call
where we use the pitch parameter to specify the target position of

SIML 23.2%
SI bMMI 21.4%
SI fMPE + bMMI 18.9%
SA fMPE + bMMI | 14.5%

Table 1. GMM baseline error rate on HUB5-2000

the combined matrix. The nice part here is that cudaMemcpy2D can
be used directly to copy memory between devices without any extra
device management.

3.3. Multi-task learning

While we have not exploring multi-task learning [12] in this work,
another benefit of the graph structure is that it allows us to specify
multiple targets. An example of multiple targets is the use of differ-
ent decision trees as in [13]. Multiple target / output layers for neural
networks is a form of multi-task learning and used to improve gen-
eralization. For example, speech enhancement features were used in
[14]. The graph structure would look like a regular neural net with
two parallel output layers, one for the state posteriors (with softmax
and cross-entropy) and another one for clean target features (with
sigmoid and MSE).

4. EXPERIMENTS ON SWB

4.1. GMM system

The following experiments are carried out on the Switchboard
(SWB) task. The training set is the 300k SWB-1 corpus, the same as
used in [1]. Error rates are reported for the Hub5-2000 test set. First,
we used our regular training recipe (see [15] for details) to establish
a GMM baseline. The model comes with all standard state-of-the-
art techniques including VTLN, FMLLR, MLLR, LDA, STC plus
feature and model space discriminative training. The system has
350000 Gaussians with 8260 states and its performance is summa-
rized in Table 1.

4.2. MLP, CNN, and jointly trained MLP/CNN

All neural nets were trained with layer-wise back-propagation. The
weights are randomly initialized. The initial step size is 5 x 107>
and is reduced by half every time the performance on a held-out set
does not improve. The training data is randomized at the frame-level
for each 30k chunk. The mini-batch size is 256 frames. The MLP
has six layers (left branch of Figure 1), while the CNN has one more
layer (right branch of Figure 1). Each conventional hidden layer has
2048 nodes, while the two convolutional layers use 512 nodes. The
MLP uses 40-dim FMLLR features with a temporal context of 11
frames. For the CNN, we use 40-dim VTL-warped log-mel features
together with their A and AA features. The temporal context for the
CNN features is 11 frames.

The configuration of the CNN layers is shown in Table 2. For
the first layer, we apply an overlapping window of 9 x 9 to the log-
mel input stream. Pooling operates over 3 output values, a number
we based on the findings of [5, 6]. Since we use 40 log-mel’s with
a temporal context of 11 frames, we get 32 x 3 windows. After
applying a max operation over a non-overlapping window of 3 x 1,
we get 11 x 3 windows. Applying an overlapping window of 4 x 3
from the second CNN layer, we end up with 8 X 1 windows that
form the input for the conventional layer that fuses the MLP with
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CNN #0 Feature domain | Temporal domain

Size Shift Size Shift
‘Windows 9 1 9 1
Pooling 3 3 1 1
CNN #1 Feature domain | Temporal domain

Size Shift Size Shift
Windows 4 1 3 1
Pooling 1 1 1 1

Table 2. Configuration for first and second CNN layer

Model Cross Entropy | Hessian-free sMBR
MLP 13.8% 12.3%
CNN 13.2% 11.8%
MLP/CNN 12.8% 11.2%

Table 3. neural nets on HUB5-2000

the CNN (see Figure 1). The input dimensionality for the first layer
is 3 X 9 X 9 = 243 and for the second CNN layer, we have 512 x
4 x 3 = 6144 (number of outputs from previous layer times number
of windows).

In Table 3, we summarize the performance of various neural net
models. First, the models were trained with standard backpropa-
gation and cross entropy as objective function. The models were
then retrained with Hessian-free sequence training as described in
[16]. The MLP itself is already substantially better than the best
GMM (12.3% vs 14.5%) and we gain another 0.5% improvement
by switching to a CNN. The jointly trained MLP/CNN improves the
error rate from 11.8% to 11.2%.

4.3. Joint training with I-Vectors

In the next experiment, we add I-Vectors [17] to the jointly trained
model. I-Vectors were recently proposed in [18] as a form of speaker
adaptation for neural nets. In this work, I-Vectors were used to aug-
ment regular FMLLR features to feed in extra speaker information
when training neural nets. In [18], conventional MLPs were used
for the experiments, and a 5-6% relative improvement was seen on
top of MLPs with speaker adaptive features on a SWB task similar
to the one used here. Since I-Vector derived features are not to-
pographical, CNNs were not used in [18]. On the other hand, the
CNN outperformed the MLP by 0.5% and the jointly trained model
is 1.1% better than the MLP, so it is natural to look for ways of how
to add I-Vectors to CNNs. The graph structure for our jointly trained
model makes it easy for us to do that.

The I-Vectors were generated exactly the same way as described
in [18]. A text-independent GMM with 2048 components is trained
on the same training corpus that is used to train the neural nets.
The frontend for the GMM uses the same features as the MLP:
40-dimensional FMLLR features. We extract 100-dimensional I-
Vectors for every speaker and append them to the input stream for the
MLP. This brings the total input for the MLP to 11 x40+ 100 = 540
features. The experiments in [ 18] were done based on an MLP setup
with FMLLR features on the same task as here and reported an error
rate reduction from 12.5% to 11.9% after sequence training.

The results for the joint CNN/MLP are shown in Table 4. After
sequence training, the error rate improves from 11.2% to 10.4% for

Model Cross Entropy | Hessian-free sMBR
MLP/CNN 12.8% 11.2%
MLP/CNN + I-Vector 12.1% 10.4%

Table 4. Jointly trained MLP/CNN with I-Vectors, Error rates on
HUBS5-2000

the jointly trained MLP/CNN with I-Vectors. This shows that the
improvements on the MLP setup carry over to the more elaborate
joint MLP/CNN model and demonstrates the effectiveness of our
model.

4.4. Comparison with System Combination

The jointly trained MLP/CNN can be seen as a form of system com-
bination, where the outputs of the first MLP hidden layer get com-
bined with the outputs of the second CNN layer. As a contrast exper-
iment, we wanted to see how much we would gain from combining
separate MLP and CNN models. Since ROVER does not work well
when combining only two systems, we used score fiision, where we
average the acoustic scores from both models. The error rate for the
system combination of separate MLP (12.3%) and CNN (11.8%) is
11.2% - the same as for the jointly trained model.

‘We repeated the same experiment including the I-Vector config-
uration. In this case, the separate models have error rates of 11.9%
(MLP+I-Vector) and 11.2% (CNN). Score fusion of both models
gives us an error rate of 10.5%, slightly worse than the jointly trained
model with 10.4%.

One way to look at this is that we can achieve the full gain of
system combination with only one jointly trained model. The benefit
of a jointly trained model is that we do not need to train two separate
models (and training time for neural nets matters even on GPUs).
Furthermore, during decoding we only need to do one acoustic score
computation, whereas score fusion will double the acoustic score
computation time. Also, the jointly trained model has only about
10% more parameters than the CNN alone, significantly less than
the separate MLP and CNN.

5. EXPERIMENTS ON RATS

RATS is a DARPA program focusing on the noise robust processing
of speech with several sub-tasks. We report in this paper experi-
ments on two sub-tasks: speech activity detection (SAD) and key-
word search (KWS). The data collection consists of re-transmitted
clean data over a noisy channel. The “clean” audio data has Call-
home type characteristics (telephone conversations), while the noisy
data was obtained by transmitting the original audio through a pair
of senders and receivers. In total, 8 different transmissions were per-
formed by using different sender and receiver combinations.

5.1. Acoustic Models for Keyword Search

The goal of keyword search (also known as spoken term detection)
is to locate a spoken keyword in audio documents. For this task,
300 hours of acoustic training data are available. From our point of
view, KWS is essentially LVCSR plus some form of post-processing
of lattices to generate a searchable index. The target languages for
KWS are Levantine and Farsi. The baseline acoustic models are
neural nets and described in detail in [10]. For an overview of the
entire KWS system, we refer to [19]. The CNN and joint MLP/CNN

5611



Model A B C D E F clean
CNN 498 | 72.3 | 57.3 | 564 | 73.7 | 58.2 | 42.7
MLP/CNN | 47.6 | 69.5 | 55.1 | 524 | 72.2 | 56.6 | 40.6

Table 5. Levantine RATS LVCSR, Error rates on dev-04
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Fig. 2. Comparison between a joint MLP/CNN model and separate
models with score fusion for speech activity detection on the RATS
task.

configuration is similar to the setup used for the SWB experiments.
The only difference is the number of output units, where we use
7000 HMM states for our RATS Levantine system. The results are
shown in Table 5 for different noise conditions and demonstrate the
effectiveness of the joint training approach.

5.2. Speech Activity Detection

The goal of the speech activity detection (SAD) task is to determine
whether a signal contains speech or is just comprised of background
noise or music. The performance is measured in terms of the prob-
ability of miss (Puiss) and the probability of false accept (Pra)
which are defined as the duration of missed speech over the duration
of total speech and the duration of false accept (or inserted) speech
over the duration of total non-speech, respectively.

In Figure 2 we compare the ROC curves on the DEV1 test set
which contains 11 hours of audio for two systems. The first system
uses a score-level fusion of two neural nets: an MLP trained on a
combination of PLP, voicing and FDLP features and a CNN trained
on log-mel spectral features. More details about the models, features
and normalizations can be found in [20]. The second system uses a
joint MLP/CNN; the MLP part has the same inputs as the separately-
trained MLP (PLP, FDLP and voicing) whereas the inputs for the
CNN part are given by log-mel spectra (same as for the CNN trained
in isolation). As can be seen, the joint model yields a 20% relative
improvement in equal error rate over the separate models with score
fusion.

6. CONCLUSIONS

We described a simple extension of neural networks, that changes
the typical linear sequence of layers to a graph structure. The ben-
efit of the graph structure is that it allows us to train convolutional

and regular neural networks jointly. While I-Vectors are not topo-
graphical, the joint training approach allows us to leverage I-vectors
for convolutional neural networks. Starting with our baseline CNN
with an error rate of 11.8%, we reduced the error rate to 10.4%.
This is a 10% relative improvement over a very strong baseline. We
also demonstrated that our model works across different tasks, such
as speech activity detection and LVCSR for RATS keyword search.
Furthermore, the proposed neural graph structure allows us to imple-
ment other features in an elegant way, such as multitask learning or
the parallel use of multiple GPU devices.
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