
A COMPARISON OF TWO OPTIMIZATION TECHNIQUES FOR SEQUENCE
DISCRIMINATIVE TRAINING OF DEEP NEURAL NETWORKS

George Saon and Hagen Soltau

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

ABSTRACT

We compare two optimization methods for lattice-based sequence

discriminative training of neural network acoustic models: dis-

tributed Hessian-free (DHF) and stochastic gradient descent (SGD).

Our findings on two different LVCSR tasks suggest that SGD run-

ning on a single GPU machine achieves the best accuracy 2.5 times

faster than DHF running on multiple non-GPU machines; however,

DHF training achieves a higher accuracy at the end of the opti-

mization. In addition, we present an improved modified forward-

backward algorithm for computing lattice-based expected loss func-

tions and gradients that results in a 34% speedup for SGD.

Index Terms— sequence discriminative training, distributed

Hessian-free optimization, stochastic gradient descent, neural net-

work acoustic models

1. INTRODUCTION

Nowadays, it is safe to say that deep neural networks have displaced

Gaussian mixture models as the prevalent tool for acoustic model-

ing in ASR. Part of the reason is that discriminative training is in-

herent to DNNs whereas GMMs are generative classifiers. Max-

imum likelihood training of GMMs only guarantees optimality in

distribution not for classification. To alleviate this, one major ad-

vance for GMM-HMMs was the introduction of feature-space and

model-space (sequence) discriminative training using criteria like

maximum mutual information (MMI) [1] and minimum phone error

(MPE) [2] which resulted in accuracy gains in the range of 20%-

30% on several tasks [3]. This has prompted researchers to revisit

MMI and MPE training (or variants thereof) in the context of neural

network acoustic modeling [4]. The criterion of choice for train-

ing neural nets for classification is cross-entropy. This objective

improves frame classification performance but does not always im-

prove sequence (i.e. word) classification performance because of

the sequence constraints imposed by the HMM phone topologies,

context decision tree, pronunciation dictionary and language model

which are largely ignored.

Instead of optimizing frame accuracy, sequence training can be

used to minimize sentence error (as for MMI and boosted MMI [5]),

expected phone error (as for MPE), or expected HMM state error

(as for state-based minimum Bayes risk, MBR [6]). Compared to

frame-based discrimination, sequence training using the aforemen-

tioned criteria presents a number of additional challenges. First, the

search spaces for the reference and competitor sequences have to

be compactly encoded into “numerator” and “denominator” lattices

which requires decoding the entire training data. Second, since the

path posteriors in the lattices depend on the output of the neural net-

work, the lattice-based objective functions and gradients have to be

recomputed after every parameter update. This means that the train-

ing targets for the network change after every update. Third, because

of the previous argument, frame randomization which is beneficial

for cross-entropy training becomes computationally very expensive

in the stochastic setting.

There are two distinct avenues for discriminative sequence train-

ing. The first one proposed in [7] and applied to lattice-based MBR

loss minimization in [8] is to use a powerful second-order optimiza-

tion technique called Hessian-free or truncated Newton which can

be run in a distributed environment. The main idea of this method

is to form a quadratic approximation of the objective function at ev-

ery step and to minimize this quadratic using a conjugate gradient

(CG) method with an early stopping criterion (hence the name trun-

cated). Solving the CG subproblems requires repeatedly computing

curvature-vector products which can also be done in a distributed

fashion. The second avenue favored by [9, 10] is to use stochastic

gradient descent on a single GPU machine for the optimization. The

main difference between the two approaches is in the number and

type of updates. For DHF, the model is updated only once for every

pass through the training data whereas for SGD this is typically done

after every training utterance. The DHF updates are very accurate

because they take into account the true gradient and the local cur-

vature of the objective function and can make rapid progress along

directions of low curvature which are typically missed by steepest

descent methods. In contrast, the gradients used for SGD are very

noisy but the noise components tend to cancel out over time allowing

the optimization to make progress along useful directions.

Compared to [8], we arrive at a different conclusion regarding

the speed of SGD versus DHF training mainly due to the use of a

GPU architecture for SGD, and confirm that DHF achieves a higher

accuracy at the end of the optimization (a fact also observed in [11]

for cross entropy training). Compared to [9, 10], we discuss DHF

training and compared to [12, 13], we contrast DHF with utterance-

level SGD. Lastly, we present an improved version of the modified

forward-backward algorithm [14] for MBR loss and gradient com-

putation that has not been published before.

2. MBR SEQUENCE TRAINING

In order to introduce some notations, recall that in a DNN-HMM

hybrid model, the DNN computes the “pseudo log-likelihood” for

HMM state s given acoustic frame xt as

log p(xt|s) = log p(s|xt) − log P (s) + log p(xt) (1)

where P (s) is the prior probability of s and p(xt) is the data prob-
ability which does not depend on s and can be ignored. The state
posterior probability p(s|xt) is computed by a soft-max layer and
has the expression

log p(s|xt) = ast − log

"

X

s′

exp(as′t)

#

(2)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5604

with ast denoting the input to the soft-max activation function for

state s at time t. Note that, for the purpose of best path and lattice-
based state posterior computations, the soft-max non-linearity can

be discarded because log[
P

s′
exp(as′t)] does not depend on s, i.e.

log p(s|xt) ≈ ast.

2.1. Objective function and gradients

In this paper we limit the discussion to the state-based minimum

Bayes risk (MBR) objective function given that it was shown

to be superior to other discriminative criteria for DNN sequence

training [8, 10]. Consider the training data formed of R obser-
vation sequences and associated reference HMM state sequences

{(X1, S1), . . . (XR, SR)} where Xr = xr
1 . . .xr

Tr
and Sr =

sr
1 . . . sr

Tr
. The MBR objective function can be written as

L(θ) =

R
X

r=1

X

S

pθ(S|X
r)H(S,S

r)

=
R

X

r=1

X

S

pκ
θ (Xr|S)P (S)H(S,Sr)
P

S′ pκ
θ (Xr|S′)P (S′)

(3)

with θ encoding the DNN parameters (weight matrices and biases)
and κ denoting the acoustic scaling factor. H(S,Sr) is the state
frame error function and simply counts the number of incorrect states

in S given the reference Sr. pθ(S|X
r) and pκ

θ (Xr|S) denote re-
spectively the posterior probability of the state sequence S given the
acoustics Xr and the scaled likelihood of the acoustics given the

state sequence. P (S) is the prior probability of S and encodes the
HMM state transition probabilities, the pronunciation dictionary and

the language model. The MBR state occupancies are given by the

gradient of L(θ) with respect to the outputs of the DNN for utter-
ance r and time t (also called ”error signal”) [4]. According to (1)

ǫ
r
t (s)

∆
=

∂L(θ)

∂ log p(s|xt)
=

∂L(θ)

∂ log p(xt|s)
(4)

Using some notations inspired by [9], it can be shown that

ǫ
r
t (s) = κγ

r
t (s)

ˆ

ES|Xr,st=s{H(S,S
r)} − ES|Xr{H(S, S

r)}
˜

(5)

ES|Xr,st=s{H(S, Sr)} is the expected state error for utterance
r computed over paths going through state s at time t, whereas
ES|Xr{H(S, Sr)} is the expected state error computed over all the
paths given the observation sequenceXr . γr

t (s) is the state posterior
probability of being in s at t conditioned on the acousticsXr. In the

following, we will propose an efficient algorithm to compute these

expectations and MBR state occupancies over a lattice.

2.2. Improved modified forward-backward algorithm

A word-level lattice is a directed graph defined by a set of

nodes N = {0, . . . , N − 1} and a set of arcs A =
{(i0, j0), . . . , (iQ−1, jQ−1)} ⊂ N × N . Each arc (iq, jq) ∈ A
is defined by a source node iq ∈ N and a destination node jq ∈ N
with iq < jq meaning that the lattice is topologically sorted. The

arcs are sorted in increasing source node order (q < q′ ⇒ iq < iq′)
so that, when processing the arcs in sequence from 0 . . . Q − 1, the
lattice is traversed in topological order. By convention, the start

state has index 0 and the set of final states is F ⊂ N . More-
over, each arc (iq , jq) contains a time-aligned subsequence of HMM
state labels denoted by s

q

τ(iq), s
q

τ(iq)+1, . . . , s
q

τ(jq)−1 where τ (iq)

and τ (jq) are the times corresponding to the source and destina-
tion nodes, respectively. The arc score is defined as the product of

scaled HMM state observation likelihoods along the arc times the

LM score, i.e. p(q)
∆
=

h

Qτ(jq)−1

t=τ(iq)
pκ(xt|s

q
t)

i

LM(q). The arc

state error is the number of incorrect state labels along the arc, i.e.

H(q)
∆
=

Pτ(jq)−1

t=τ(iq) [1 − δ(sq
t , ŝt)] where ŝt is the reference HMM

state at time t and δ is the Kronecker symbol.
Next, let us introduce the following quantities: αi, βi are the for-

ward and backward likelihoods for node i and α′
i, β

′
i are the forward

and backward expected state errors of all the paths ending and be-

ginning with node i, respectively. With these notations, the proposed
algorithm for MBR HMM state occupancies is given below.

Algorithm 1 Improved modified forward-backward algorithm for

MBR state occupancies.

Require: arc scores p(q) and state errorsH(q)
1: for node i = 0 . . . N − 1 do
2: αi = α′

i = βi = β′
i = 0

3: end for

4: α0 = 1
5: for arc (iq, jq), q = 0 . . . Q − 1 do
6: αjq +=αiq p(q)
7: end for

8: for arc (iq, jq), q = 0 . . . Q − 1 do

9: α′
jq

+=
αiq

p(q)
h

α′

iq
+H(q)

i

αjq

10: end for

11: for node i ∈ F do
12: βi = 1
13: end for

14: for arc (iq, jq), q = Q − 1 . . . 0 do
15: βiq +=βjq p(q)
16: end for

17: for arc (iq, jq), q = Q − 1 . . . 0 do

18: β′
iq

+=
βjq

p(q)
h

β′

jq
+H(q)

i

βiq

19: end for

20: ℓ = c = 0
21: for node i ∈ F do
22: ℓ+=αi

23: c +=αiα
′
i

24: end for

25: for arc (iq, jq), q = 0 . . . Q − 1 do

26: γq =
αiq

p(q)βjq

ℓ

27: cq = α′
iq

+ H(q) + β′
jq

28: ǫq = γq(cq − c)
29: end for

Ensure: ǫt(s) =
P

q:s
q
t =s

ǫq

Compared to the algorithm described in [14], α, α′, β, β′ are

defined at the node level (instead of at the arc level). This allows for

an efficient calculation of these quantities in O(Q) through sequen-
tial processing of the arcs in topological order (direct or reversed) in

steps 5, 8, 14 and 17. In contrast, the complexity in [14] is O(QR)
where R is the average number of predecessor or successor arcs.
Additional memory and execution time are saved by avoiding the

computation of predecessor and successor arcs in the first place.

5605

2.3. Hessian-free optimization

While this algorithm has been described extensively in [7], in order

to compare it with SGD, we remind the reader that the underlying

theory of Newton-type algorithms is to approximate the loss func-

tion L around θk by a quadratic function. Specifically, Newton-type

algorithms consider the second-order Taylor expansion

L(θk + p) ≈ qθk (p) = L(θk) + b
T
k p + p

T
Hkp (6)

where bk = ∂L
∂θ

˛

˛

θk is the gradient andHk = ∂2L
∂θ2

˛

˛

θk represents the

Hessian matrix both evaluated in θk. The Newton algorithm finds

the new estimate

θ
k+1 = θ

k + αkpk (7)

where pk is obtained by minimizing qθk . In order to avoid direc-

tions of negative curvature and to make the minimization more ro-

bust, the Hessian is replaced by a damped Gauss-Newton matrix of

the form Gk + λI where the damping factor λ is updated using a
Levenberg-Marquardt type of heuristic [7]. The minimization of (6)

is carried out using conjugate gradient (CG) which has two advan-

tages. First, CG makes rapid progress after few iterations meaning

that the minimization can be stopped early (hence the name truncated

Newton). Second, CG can be formulated solely in terms of matrix-

vector products which means that the Hessian matrix does not have

to be computed and stored explicitly; only its effect on a vector has

to be known (hence the name Hessian-free). The computation of

the gradient and the curvature-vector products (Gk +λI)p required
for the CG minimization can be parallelized and sped up as in [13].

Lastly, the stepsize αk in (7) is chosen by performing a linesearch

along the direction pk. Generally, αk is less than 1 because pk only

minimizes qθk(p) not necessarily L(θk + p).

2.4. Stochastic gradient descent

In contrast to Hessian-free, the update for SGD is remarkably simple

θ
k+1 = θ

k − αk

∂Lrk

∂θ

˛

˛

˛

θk
(8)

where Lrk
is the loss function corresponding to a randomly selected

utterance rk ∈ {1, . . . , R} at iteration k. Typically, αk is held con-

stant over the course of one epoch. Compared to (7), here the model

is updated after every single utterance as opposed to once per train-

ing data sweep.

3. EXPERIMENTS AND RESULTS

3.1. Experiments on English CTS 300 h

The first set of experiments was carried out on a 300 hour subset of

the Switchboard English conversational telephone speech task. We

report results on the SWB part of the Hub5 2000 testset which con-

tains 2.1 hours of audio and 21.4K words. For comparison, results

on this task and testset can also be found in [15, 8, 10, 16].

Acoustic feature processing consists in extracting 13-

dimensional PLP cepstra every 10ms which are mean and variance

normalized on a per speaker basis. The cepstra are warped with

VTLN and every 9 consecutive cepstral frames are concatenated

and projected down to 40 dimensions using LDA. The resulting

features are decorrelated by means of a global semi-tied covariance

transform. The LDA/STC features are further transformed with

feature-space MLLR (FMLLR) per conversation side for both

training and test. The FMLLR transforms are estimated using a

baseline GMM-HMM system. As suggested in [15], the input to the

DNNs is formed by concatenating 11 consecutive FMLLR frames.

All nets have 6 hidden layers with sigmoid activation functions:

the first 5 with 2048 units and the last one with 256 units for pa-

rameter reduction and faster training time [17]. The output layer has

9300 softmax units that correspond to the context-dependent HMM

states obtained by growing a phonetic decision tree with pentaphone

crossword context. Following the recipe outlined in [15], the train-

ing data is fully randomized at the frame level within a window of

25 hours and we trained the nets with stochastic gradient descent

on minibatches of 250 frames and a cross-entropy criterion. Prior

to the cross-entropy training of the full network, we used layerwise

discriminative pretraining [15] by running one cross-entropy sweep

over the training data for the intermediate networks obtained by

adding one hidden layer at a time. Cross-entropy training converged

after 14 iterations and the final networks are used to decode the train-

ing data with a unigram LM and dump numerator and denominator

lattices. The resulting denominator lattices have a link density of

8690 arcs per second and were generated according to [18].

For SGD training, we used utterance randomization and an ini-

tial step size of 1e-5 without acoustic weight scaling (same as [10]).

After the first iteration, the step size was reduced to 1e-6 and kept

constant for the subsequent iterations. Lattice-based processing was

done on the CPU and the backpropagation for the neural net was

done on a Tesla K10 GPU card. In order to minimize the effect of

I/O, we found it beneficial to group the features and lattices for the

randomized utterances into 100 batches of approximately 1900 ut-

terances each and to read and process one random batch at a time.

CPU Time (secs) GPU Time (secs)

Algorithm [14] 1235 659

Algorithm 1 917 434

Speedup 25% 34%

Table 1. SGD processing times (excluding I/O) and speedups for

3625 utterances with two algorithms for MBR state occupancy cal-

culation when the backpropagation is run on the CPU versus GPU.

In Table 1 we show the SGD processing times (excluding I/O)

for 3625 utterances (5 hours of audio) when the neural net back-

propagation is done on the CPU versus GPU and when the MBR oc-

cupancies are computed with Algorithm 1 versus [14]. We observe

that the use of Algorithm 1 for the modifed forward-backward passes

over the lattice results in a 34% speedup when the backpropagation

is done on the GPU. A 25% speedup is observed when the entire

computation is done on the CPU (which is the case for DHF). Ad-

ditional speedups for SGD could be obtained by moving the MBR

computation to the GPU card as done in [9] although this has not

been investigated. One sequence SGD pass over the entire training

data takes 11.9 hours (versus 6 hours for a cross-entropy pass). In

Figure 1, we compare distributed Hessian-free training running on a

cluster of 40 8-core Intel Xeon 3Ghz compute nodes with stochastic

gradient descent running on a single 8-core Intel Xeon 2.7Ghz ma-

chine with a Tesla K10 GPU card. As can be seen, DHF obtains the

best performance of 12.5% after approximately 6.4 days of process-

ing time (corresponding to 24 passes through the data) whereas SGD

obtains the lowest error rate of 12.7% after only 2 days of compu-

5606

tation (corresponding to 4 passes through the data). The same error

rate is achieved by DHF after approximately 5 days. Also shown

is the fact that running additional DHF iterations on top of the best

SGD models does not improve the performance further.

 12.4

 12.6

 12.8

 13

 13.2

 13.4

 13.6

 13.8

 14

 14.2

 0 1 2 3 4 5 6 7 8 9 10

W
E

R
 (

%
)

Computing time (days)

DHF
SGD

SGD+DHF

Fig. 1. Word error rates on Hub5’00 versus computation time for

MBR sequence training with DHF and SGD on English CTS.

3.2. Experiments on RATS Levantine 300 h

The second set of experiments was carried out on noisy Levantine

speech for the RATS (Robust Automatic Transcription of Speech)

task which is a DARPA program aimed at performing speech activity

detection, language and speaker identification and keyword search in

audio documents which are sent over highly degraded radio commu-

nication channels. The training data for ASR was obtained by re-

transmitting “clean” Callhome-type telephone conversations in Lev-

antine Arabic using 8 different sender and receiver pairs. The result-

ing channels, labeled A-H, exhibit highly variable distortions with

channel G being the closest to the original data. We report results on

the retransmitted Levantine Dev’04 testset. Front-end processing is

identical to the English CTS experiments i.e. PLP VTL-warped cep-

stra followed by LDA, STC and speaker-based FMLLR, the latter

being applied at both training and test time. The input to the neural

nets is formed by ±5 40-dimensional FMLLR frames.
The networks have 6 hidden layers with 2048 sigmoid units each

and an output layer with 7000 softmax units corresponding to the

context-dependent HMM states obtained by growing a decision tree

with phonetic questions in a ±2 phones context window. The base-
line DNNs are grown one layer at the time with discriminative pre-

training and trained until convergence with cross-entropy on frame-

randomized minibatches of size 250. The resulting networks are

used to compute numerator and denominator lattices on the training

data. The denominator lattices have a link density of 4732 arcs per

second. In Figure 2, we compare distributed Hessian-free training

running on a cluster of 48 compute nodes with stochastic gradient

descent running on a single GPUmachine. We observe that DHF ob-

tains the best performance of 37.8% after approximately 17.6 days

of processing time (corresponding to 27 iterations, not all of them

displayed) whereas SGD obtains the lowest error rate of 38.2% af-

ter 3.5 days of computation (corresponding to 5 passes through the

data). The same error rate is achieved by DHF after approximately

10 days. Despite similar amounts of audio and smaller denominator

lattices compared to the Switchboard task, the computation times for

the RATS task are longer because the DNN weight matrices between

the last hidden layers and the output layers are not factorized which

makes the forward and backward passes more costly. For example,

one SGD iteration takes 17 hours as opposed to 11.9 hours for the

Switchboard task.

 37.5

 38

 38.5

 39

 39.5

 40

 40.5

 41

 41.5

 42

 42.5

 0 2 4 6 8 10 12 14 16 18

W
E

R
 (

%
)

Computing time (days)

DHF
SGD

Fig. 2. Word error rates on Dev’04 channel G versus computation

time for MBR sequence training with DHF and SGD on RATS.

Lastly, in Table 2 we compare the performance of DHF and SGD

on all the channels and observe that the improvement obtained with

DHF is 0.4% absolute higher on average than with SGD.

A B C D E F G H

CE 50.3 72.9 59.4 55.0 75.4 60.1 42.1 85.8

DHF 46.7 72.4 58.0 51.8 79.1 57.0 37.8 85.5

SGD 47.3 73.5 58.2 52.0 79.0 57.6 38.2 85.6

Table 2. Word error rates per channel on Dev’04 for CE, DHF and

SGD on RATS Levantine.

4. DISCUSSION

The previous results suggest that a mixed strategy which combines

the speed of SGD with the accuracy of DHF should be investigated.

According to Figure 1, switching to DHF after SGD has converged

does not seem to work because the DHF iterations become expensive

at that point which nullifies the speed advantage of SGD. Perhaps a

better approach would be to use curvature information for SGD as

proposed in [19]. Alternatively, one can opt for a stochastic form of

DHF as done recently in [12] where the training data is split into sev-

eral batches and the model is updated with DHF after every batch.

As GPU architectures become more widespread, we currently inves-

tigate the possibility of running DHF on a cluster of GPU machines

which should make the training speed comparable to SGD.

5. ACKNOWLEDGMENT

The authors wish to thank Brian Kingsbury for useful discussions.

This work was supported in part by Contract No. D11PC20192

DOI/NBC under the RATS program. The views expressed are those

of the author and do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

5607

6. REFERENCES

[1] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer,

“Maximum mutual information estimation of hidden Markov

model parameters for speech recognition,” in Proc. of ICASSP,

1986, pp. 49–52.

[2] D. Povey and P. C. Woodland, “Minimum phone error and I-

smoothing for improved discriminative training,” in Proc. of

ICASSP, 2002, pp. 105–108.

[3] G. Saon and J.-T. Chien, “Large vocabulary continuous speech

recognition systems: a look at some recent advances,” IEEE

Signal Processing Magazine, vol. 29, no. 6, pp. 18–33, 2012.

[4] B. Kingsbury, “Lattice-based optimization of sequence clas-

sification criteria for neural-network acoustic modeling,” in

Proc. of ICASSP, 2009.

[5] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran,

G. Saon, and K. Visweswariah, “Boosted MMI for model

and feature-space discriminative training,” in Proc. of ICASSP,

2008, pp. 4057–4060.

[6] J. Kaiser, B. Horvat, and Z. Kacic, “A novel loss function for

the overall risk criterion based discriminative training of HMM

models,” in Proc. ICSLP, 2000.

[7] J. Martens, “Deep learning via Hessian-free optimization,” in

Proc. of ICML, 2010.

[8] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum

Bayes risk training of deep neural network acoustic models

using distributed Hessian-free optimization,” in Proc. Inter-

speech, 2012.

[9] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for

sequence training of context-dependent deep networks for con-

versational speech transcription,” in Proc. of ICASSP, 2013.

[10] K. Vesely, A. Ghoshal, L. Burget, and D. Povey, “Sequence-

discriminative training of deep neural networks,” in Proc. In-

terspeech, 2013.

[11] S. Wiesler, J. Li, and J. Xue, “Investigations on Hessian-

free optimization for cross-entropy training of deep neural net-

works,” in Proc. Interspeech, 2013.

[12] P. Dognin and V. Goel, “Combining stochastic average gra-

dient and Hessian-free optimization for sequence training of

deep neural networks,” in Proc. ASRU, 2013.

[13] T. Sainath, L. Horesh, B. Kingsbury, A. Aravkin, and B. Ram-

abhadran, “Improving training time of Hessian-free optimiza-

tion of deep neural networks using preconditioning and sam-

pling,” in Proc. ASRU, 2013.

[14] D. Povey, Discriminative Training for Large Voculabulary

Speech Recognition, Ph.D. thesis, Cambridge University,

2004.

[15] F. Seide, G. Li, X. Chien, and D. Yu, “Feature engineering

in context-dependent deep neural networks for conversational

speech transcription,” in Proc. ASRU, 2011.

[16] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker

adaptation of neural network acoustic models using i-vectors,”

in Proc. ASRU, 2013.

[17] T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and

B. Ramabhadran, “Low-rank matrix factorization for deep neu-

ral network training with high-dimensional output targets,” in

Proc. of ICASSP, 2013.

[18] G. Saon, D. Povey, and G. Zweig, “Anatomy of an extremely

fast LVCSR decoder,” in Proc. Interspeech, 2005.

[19] R. Kiros, “Training neural networks with stochastic Hessian-

free optimization,” in Proc. of Int. Conf. on Learning Repre-

sentations, 2013.

5608

