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ABSTRACT
The accurate modeling of non-stationary noise plays an important
role in model-based noise suppression for noise robust speech recog-
nition. We have already proposed methods for unsupervised noise
modeling with a Gaussian mixture model or a hidden Markov model
by using a minimum mean squared error estimate of the noise. How-
ever, our previous work fixed the structure of the noise model empir-
ically without any consideration of noise characteristics; thus, opti-
mization of the noise model structure is required if we are to obtain
further improvements. Although the Bayesian information criterion
(BIC) has been widely used as a conventional approach to model
structure estimation, it is not always the optimal criterion. There-
fore, this paper presents a way of modeling non-stationary noise with
a non-parametric Bayesian approach that estimates the model struc-
ture depending on the characteristics of given observations. The pro-
posed method provided improved results for the evaluations of two
different speech recognition tasks compared with results obtained
using the conventional BIC-based approach.

Index Terms— noise suppression, unsupervised modeling, non-
parametric Bayesian model, MMSE estimation

1. INTRODUCTION
With the spread of speech applications including voice search, en-
suring the noise robustness of automatic speech recognition (ASR)
is becoming a more critical problem. Various techniques have been
proposed for the front-end processing of ASR including robust fea-
ture extraction [1, 2], feature space normalization [3]-[5], and noise
suppression [6]-[13]. Recently, a denoising autoencoder [14], which
is based on a deep neural network approach, has attracted attention.
On the other hand, back-end processing techniques have been pro-
posed including model compensation [15, 16] and model adaptation
[17]-[19] to reduce the mismatch between observed (noisy speech)
signals and acoustic models. To exploit the uncertainty of noise,
uncertainty decoding techniques have also been proposed [20, 21].
Of these various techniques, we have focused our research on the
model-based noise suppression.

As a representative model-based noise suppression technique, a
vector Taylor series (VTS)-based approach [8] and its various ex-
tensions have been proposed in recent years [16],[22]-[24]. The
VTS-based approach compensates the model of the observed sig-
nal with models of clean speech and noise. Usually, the parame-
ters of the clean speech model are fixed in the VTS-based approach;
hence only the parameters of the noise model are estimated with the
EM algorithm and the given observed signals. The typical VTS-
based approach employs a single Gaussian distribution for the noise
model. Since non-stationary noise has a multi-modal distribution
and a temporal structure, a single Gaussian distribution is unsuitable
for the model of the non-stationary noise. Therefore, a model with a
complex structure, e.g., a Gaussian mixture model (GMM) or a hid-
den Markov model (HMM) is required to ensure robustness against

non-stationary noise. In relation to this problem, we have recently
proposed unsupervised estimation methods for a noise model with
GMM [11] or HMM [12] by using minimum mean squared error
(MMSE) estimates of the noise, and some extensions [13].

In our previous studies, the structure of the noise model, i.e., the
numbers of Gaussian components and HMM states, is empirically
decided through preliminary experiments, and is fixed regardless of
the noise characteristics. Since the characteristics of non-stationary
noise change on different occasions, the structure of the noise model
should be adequately estimated by depending on the given observed
signal. Instead of empirical rules, the Bayesian information criterion
(BIC) has been widely used for the model structure selection. How-
ever, as described in [25], the BIC is not always the optimal criterion,
and should not be strictly applied to a structured model including any
latent variables. In addition, since the BIC-based approach requires
various models learned with different structures to select a suitable
model, its computational cost tends to be high.

To deal with this problem, a non-parametric Bayesian approach,
which allows a model structure with infinite components, e.g., an
infinite GMM (IGMM) or an infinite HMM (IHMM), has attracted
attention in machine learning research. This approach considers that
finite data are provided by a generative model with infinite compo-
nents in the data generation process. Therefore, the optimal number
of model components is decided by estimating the latent variable that
indicates the generating model components of the given finite data.
On the basis of the above considerations, we investigate the appli-
cation of a non-parametric Bayesian approach to our unsupervised
method for noise model estimation. As the first step of this investiga-
tion, in this paper, we present a method for unsupervised noise mod-
eling with an IGMM. With the non-parametric Bayesian approach,
the IGMM is realized by a Dirichlet process mixture (DPM) [26]
which is equivalent to an infinite dimensional Dirichlet distribution.
In this paper, we implement the DPM with an efficient sampling-
based algorithm, thus we can provide accurate IGMM-based noise
modeling at a low computational cost.

The proposed method was evaluated on two ASR tasks; the AU-
RORA2 task [27] and the Japanese large vocabulary task. The eval-
uation results reveal that the proposed IGMM-based noise model
successfully improves the ASR accuracies of both tasks in results
obtained by conventional model selection based on the BIC.

2. REVIEW OF MODEL-BASED NOISE SUPPRESSION
This section briefly reviews our previous work [11]-[13].

2.1. Definition of statistical models
In our implementation, the clean speech model is given by an er-
godic HMM with two internal states, i.e., states of silence (j =
1) and speech (j = 2), where j denotes the state index. Each
state is modeled in advance by a GMM with K Gaussian compo-
nents in theD-dimensional log mel-filter bank (LMFB) domain, and
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has model parameters that consist of the mixture weight wS,j,k, the
mean vector μS,j,k � {μS,j,k,d}D−1

d=0 , and the diagonal variance
matrix ΣS,j,k � diag {σS,j,k,d}D−1

d=0 . k and d denote the indices of
the Gaussian component and the element of a vector or a diagonal
component of a matrix. On the other hand, the noise model is given
by a GMM with L Gaussian components in the LMFB domain, and
has model parameters that consist of the mixture weight wN,l, the
mean vector μN,l � {μN,l,d}D−1

d=0 , and the diagonal variance ma-
trixΣN,l � diag {σN,l,d}D−1

d=0 . l denotes the Gaussian index.

2.2. Mismatch function and model composition
At the t-th frame, the LMFB vector of the observed signal Ot �
{Ot,d}D−1

d=0 is derived by using the following mismatch function
with the LMFB vectors of the clean speech St � {St,d}D−1

d=0 and
the noiseN t � {Nt,d}D−1

d=0 .

Ot,d = St,d + log (1 + exp (Nt,d − St,d)) ≡ h (St,d, Nt,d) (1)

Based on Eq. (1), the parameters of the observed signal model,
which consist of the mixture weight wO,j,k,l, the mean vector
μO,j,k,l � {μO,j,k,l,d}D−1

d=0 , and the diagonal variance matrix
ΣO,j,k,l � diag {σO,j,k,l,d}D−1

d=0 are derived as

wO,j,k,l = wS,j,k,l · wN,l (2)
μO,j,k,l,d = h (μS,j,k,d, μN,l,d) (3)

σO,j,k,l,d � H2
j,k,l,d · σS,j,k,d + (1−Hj,k,l,d)

2 · σN,l,d , (4)

with the JacobianHj,k,l,d = ∂h (μS,j,k,d, μN,l,d) /∂μS,j,k,d.
2.3. Parameter estimation of noise model with MMSE estimates
The parameters of the noise model are estimated by using the EM
algorithm [13] with the MMSE estimate of the noise Ñ t derived as:

Ñ t = Ot +
∑
j,k,l

Pt,j,k,l

(
μN,l − μO,j,k,l

)
, (5)

with posterior probability

Pt,j,k,l =
wO,j,k,lN

(
Ot

∣∣μO,j,k,l,ΣO,j,k,l

)
∑

j,k,l wO,j,k,lN
(
Ot

∣∣μO,j,k,l,ΣO,j,k,l

) , (6)

where N (·|·) denotes the probability density function (PDF) of the
Gaussian distribution.

2.4. MMSE-MAP estimation of clean speech
We employ an MMSE-maximum a posteriori (MAP) estimation for
noise suppression [12]. This method first estimates the clean speech
μ̃S,t,j,k,l for each Gaussian component k and l in state j at frame
t with the MAP criterion. With the MAP estimates μ̃S,t,j,k,l, the
clean speech S̃t is estimated with the MMSE manner of Eq. (7).

S̃t =
∑
j,k,l

Pt,j,k,l · μ̃S,t,j,k,l (7)

3. INFINITE GAUSSIAN MIXTURE MODEL
3.1. Conventional finite GMM with Dirichlet distribution
The data generation process of a finite GMM (FGMM) with fixed
L Gaussian components is derived as Eqs. (8) and (9). The param-
eters of Gaussian components ΘN � {θN,l}Ll=1, where θN,l �{
μN,l,ΣN,l

}
and mixture weights wN � {wN,l}Ll=1 are drawn

from the base measure G0 and the Dirichlet distribution D (· |γ/L )
with the concentration parameter γ, respectively. The latent variable
zt, which indicates the generating Gaussian component of the data

N t, is decided by the multinomial distribution M (· |wN ), then,
N t is generated from the Gaussian componentN (· |θN,l=zt ).

ΘN ∼ G0 , wN ∼ D (· |γ/L ) (8)
zt |wN ∼M (· |wN ) , N t |θN,l=zt ∼ N (· |θN,l=zt ) : ∀t (9)

G0 is given by the following Gaussian-Gamma distribution.

G0

(
ΘN |Θ(0)

N

)
=

∏
d

N
(
μN,l,d

∣∣∣μ(0)
N,d, σN,d/ξ

(0)
)

× G
(
σ−1
N,l,d

∣∣∣η(0), r
(0)
N,d

)
, (10)

where the parameter Θ(0)
N consists of the mean μ(0)

N,d, the precision
ξ(0), the shape η(0), and the scale r(0)N,d. G(·|·) denotes the PDF of
the Gamma distribution.

With the FGMM, L is decided by an empirical rule or an infor-
mation criterion, e.g., the BIC, as follows:

L = argmin
L

{
−2

∑
t

log p (N t |wN ,ΘN ) + q log T

}
, (11)

where p (N t |wN ,ΘN ) denotes the likelihood of the model with a
certain number of Gaussian components. q ∝ L and T denote the
number of model parameters and data, respectively.
3.2. Infinite GMM with Dirichlet process mixture
The IGMM employs the DPM, which is equivalent to a infinite di-
mensional Dirichlet distribution for the prior distribution of mixture
weights. In the data generation process with the DPM, although the
IGMM consists of infinite Gaussian components, the generated data
are restricted to a finite number. Thus, the number of Gaussian com-
ponents that generate the finite data must also be finite. By solv-
ing the inverse problem of this data generation process, the number
of Gaussian components L is decided flexibly by depending on the
characteristics of the given finite data.

The DPM is often implemented by using the Chinese restaurant
process (CRP), because it has the potential to avoid a local solu-
tion with Gibbs sampling. The CRP has exchangeability, namely
the joint distribution of the latent variable zt P (z0, · · · , zT−1) =
P (z0)P (z1 |z0 ) · · ·P (zT−1 |z0, · · · , zT−2 ) is invariant even if
zt is exchanged on any t. With this property, we can easily imple-
ment the CRP-based IGMM estimation with the Gibbs sampling.

The data generation process of the CRP-based IGMM is derived
as Eqs. (12) and (13). The latent variable zt is drawn from the pos-
terior distribution P (·

∣∣z\t ), where z\t � {zi : ∀i, i �= t, }.

θN,l ∼ G0 : l ∈ {1, · · · ,∞} (12)

zt ∼ P (·
∣∣z\t ) , N t ∼ N (· |θN,l=zt ) : ∀t (13)

With the above definitions, the posterior probability of zt = l,
given all dataN � {N t}T−1

t=0 , z\t, andΘ0
N , which is required for

Gibbs sampling, is derived as

P
(
zt = l

∣∣∣N , z\t,Θ
(0)
N

)
∝ P

(
zt = l

∣∣z\t
)
p
(
N t

∣∣∣N\t, zt = l,Θ
(0)
N

)
,

(14)

whereN\t � {N i : ∀i, i �= t}.
With the FGMM, the posterior probability P

(
zt = l

∣∣z\t
)
of

Eq. (14) is derived as

P
(
zt = l|z\t

)
=

∫
P (zt = l |wN ) p

(
wN

∣∣z\t
)
dwN

= (nl + γ/L) / (T + γ) , (15)
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where nl denotes the number of data assigned to the cluster l. On
the other hand, with the CRP, P

(
zt = l|z\t

)
is given by taking the

limit of L, i.e., L → ∞ in Eq. (15). In addition, P
(
zt = l|z\t

)
is

separately computed for an existing cluster, i.e., nl > 1 and for a
new cluster, i.e., nl = 0. Thus, P

(
zt = l|z\t

)
is derived as

P
(
zt = l|z\t

)
=

{
nl/(T + γ) if zi = l, for ∃i �= t

γ/(T + γ) if zi �= l, for ∀i �= t
. (16)

The posterior probability p
(
N t|N\t, zt = l,Θ

(0)
N

)
of Eq. (14)

is also computed separately as follows:

p
(
N t|N\t, zt = l,Θ

(0)
N

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
p (N t|θN,l) p

(
θN,l|N (l)

\t ,Θ
(0)
N

)
dθN,l

=
∏

d T (Nt,d |μN,l,d, ξl, ηl, rN,l,d )

if zi = l, for ∃i �= t∫
p (N t|ΘN )G0

(
ΘN |Θ(0)

N

)
dΘN

=
∏

d T
(
Nt,d

∣∣∣μ(0)
N,d, ξ

(0), η(0), r
(0)
N,d

)
if zi �= l, for ∀i �= t

, (17)

whereN (l)

\t � {N i : ∀i, i �= t, zi = l}. T (·|·) denotes the PDF of
the Student’s t-distribution given by Eq. (18). μN,l,d, ξl, ηl, and
rN,l,d denote the mean, the precision, the shape, and the scale of the
posterior distribution of the cluster l, respectively.

T (x |μ, ξ, η, r )

≡
(

ξ

2πr(ξ + 1)

) 1
2 Γ

(
η + 1

2

)
Γ (η)

(
1 +

ξ (x− μ)2

2r(ξ + 1)

)−(η+ 1
2
)

(18)

4. CRP-BASED NOISE MODEL ESTIMATION
We attempt to estimate the IGMM-based noise model with the CRP.

4.1. Initialization
The parameter of the base measureΘ(0)

N is given empirically as:

Θ
(0)
N =

{{
μ
(0)
N,d

}D−1

d=0
, ξ(0) , η(0) ,

{
r
(0)
N,d

}D−1

d=0

}
, (19)

where μ
(0)
N,d = 1

U

∑U−1
t=0 Ot,d, ξ(0) = 1, η(0) = 1, r(0)N,d =

η(0) · σ(0)
N,d, σ

(0)
N,d = 1

U

∑U−1
t=0

(
Ot,d − μ

(0)
N,d

)2

, and U = 10.
Based on Eqs. (2) to (4), the parameters of the observed sig-

nal model are composed with μN,l=1,d = μ
(0)
N,d, σN,l=1,d = σ

(0)
N,d,

and wN,l=1 = 1. Then, Ñ t is estimated by the MMSE manner of
Eqs. (5) and (6). With Ñ t, zero-th, first, and second order sufficient
statistics of the cluster l = 1 are given as

s0,l=1 = T, s1,l=1,d =
∑
t

Ñt,d, s2,l=1,d

∑
t

Ñ2
t,d . (20)

4.2. Gibbs sampler
First, Ñ t is cancelled from the sufficient statistics of the cluster l =
zt. Here, although the sufficient statistics are computed by using Ñ t

at the previous iteration, Ñ t is updated in each iteration of the Gibbs
sampler. Thus, Ñ t at the previous iteration is kept in Ñold,t, and it
is cancelled from the sufficient statistics based on Eq. (21).

s0,l=zt ← s0,l=zt − 1, s1,l=zt,d ← s1,l=zt,d − Ñold,t,d

s2,l=zt,d ← s2,l=zt,d − Ñ2
old,t,d (21)

With the suffcient statistics, the posterior statistics of the cluster l are
updated by Eqs. (22) to (25), and the posterior probability of Eq. (14)
is computed by using them.

μN,l,d =
(
ξ(0) · μ(0)

N,d + s1,l,d
)
/ξl (22)

ξl = ξ(0) + s0,l (23)

ηl = η(0) + s0,l/2 (24)

rN,l,d = r
(0)
N,d +

(
s2,l,d + ξ(0) ·

(
μ
(0)
N,d

)2

− ξl · μ2
N,l,d

)
/2

(25)

The latent variable zt is sampled by Eq. (26), then Ñt,d is added
to the sufficient statistics of the cluster l = zt as shown in Eq. (27)

zt ∼ P
(
zt = l

∣∣∣N ,z\t,Θ
(0)
N

)
(26)

s0,l=zt ← s0,l=zt + 1, s1,l=zt,d ← s1,l=zt,d + Ñt,d

s2,l=zt,d ← s2,l=zt,d + Ñ2
t,d (27)

4.3. Parameter update
The parameter of the noise model ΘN is updated by taking the
expectation of the posterior distribution p

(
θN,l|N (l)

\t ,Θ
(0)
N

)
of

Eq. (17) derived as Eq. (28). The mixture weight is also updated by
Eq. (29). With the updated ΘN and wN , Ñ t is updated with the
MMSE manner of Eqs. (5) and (6) after the model composition of
Eqs. (2) to (4).

θN,l =
{
{μN,l,d}D−1

d=0 , diag {rN,l,d /ηl }D−1
d=0

}
(28)

wN,l = s0,l/T (29)

4.4. Processing flow
Algorithm 1 summarizes the proposed method.
Algorithm 1 IGMM-based noise model estimation with CRP
1: Feature extraction ofOt for all t
2: EstimateΘ(0)

N (Eq. (19))
3: Model composition (Eqs. (2) to (4))
4: Estimate Ñ t for all t (Eqs. (5) and (6))
5: Ñold,t = Ñ t for all t
6: Initialize sufficient statistics (Eq. (20))
7: for i = 1 to Ite do
8: for t = shuffle (0, · · · , T − 1) do
9: Cancel Ñold,t from cluster zt (Eq. (21))
10: Update posterior parameters (Eqs. (22) to (25))
11: Compute posterior probability (Eq. (14))
12: Sample zt (Eq. (26))
13: Add Ñ t to cluster zt (Eq. (27))
14: end for
15: Ñold,t = Ñ t for all t
16: UpdateΘN andwn (Eqs. (28) and (29))
17: Model composition (Eqs. (2) to (4))
18: Estimate Ñ t for all t (Eqs. (5) and (6))
19: end for
20: Apply noise suppression (Eq. (7))

5. EXPERIMENTS
The proposed method was evaluated in two ASR tasks. For these
evaluations, we mainly compared the previous FGMM [11], the
FGMM with the BIC, and the proposed IGMM. These evaluations
essentially compared each technique for deciding the number of
Gaussian components L, i.e., the empirical rule, the BIC, and the
non-parametric Bayesian approach.
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Table 1. ASR results of the AURORA2 task with the clean acoustic model in the average WER (%)
Data set Set A (development set) Set B (evaluation set)
SNR 20dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg. 20dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg.
Baseline 2.2 7.1 25.5 58.9 81.1 88.2 43.8 1.7 5.1 17.8 47.9 76.2 87.2 39.3
VTS 1.6 3.6 8.8 20.9 44.8 72.9 25.4 1.4 3.3 7.8 20.1 43.8 72.0 24.7
FGMM (L = 2) 1.2 2.3 6.6 17.3 41.4 70.8 23.3 1.0 2.1 5.6 16.4 40.2 69.2 22.4
FGMM w/ BIC 1.1 2.2 6.5 17.1 41.4 71.0 23.2 1.1 2.1 6.1 16.8 40.4 69.2 22.6
IGMM 1.3 2.4 5.9 16.1 39.4 68.9 22.3 1.0 2.0 5.3 15.0 37.5 67.3 21.4

Table 2. ASR results of the large vocabulary task with the clean acoustic model in WER (%)
Noise type Airport lobby noise Platform noise Street noise
SNR 10 dB 5 dB 0 dB 10 dB 5 dB 0 dB 10 dB 5 dB 0 dB Avg.

Baseline 26.1 59.1 87.1 27.2 55.1 79.0 11.5 28.7 61.0 48.3
VTS 17.3 38.6 71.7 23.4 44.2 70.0 7.4 15.5 30.0 35.3
FGMM (L = 2) 12.5 27.9 62.5 18.9 36.7 60.2 7.6 13.3 27.8 29.7
FGMM w/ BIC 12.8 29.2 61.0 17.0 34.0 60.4 8.2 14.1 25.9 29.2
IGMM 12.2 29.3 60.8 17.3 31.0 57.4 8.1 12.3 25.4 28.2

5.1. Experiments with small vocabulary task
5.1.1. Experimental setup
We firstly evaluated the proposed method on the AURORA2 task
[27]. AURORA2 consists of three evaluation sets, i.e., set A (four
types of known additive noises), set B (four types of unknown addi-
tive noises), and set C (one known and one unknown additive noises
with the different channel characteristic). In this evaluation, sets A
and B were used for the development set and the evaluation set, re-
spectively.

The feature parameters for the noise suppression were 24
LMFBs that were extracted by using a Hamming window with a
25 ms frame length and a 10 ms frame shift. The clean speech
model was trained by using AURORA2 clean training data. Each
state of the model hadK = 256 Gaussian components.

The HTK version 3.4.1 [28] was used for the training and evalu-
ation. Sixteen-state left-to-right word HMMs were trained by using
AURORA2 clean training data. Each state had 20 Gaussian compo-
nents. The feature parameters for the ASR consisted of 13 MFCCs
(including the zero-th MFCC) and their first and second order deriva-
tives. Cepstral mean normalization (CMN) was applied to each ut-
terance. The evaluation criterion was the word error rate (WER).

5.1.2. Experimental results
Table 1 shows the average WER of each set and each method in
the AURORA2 task. The parameters of each method were adjusted
by using the development set. The results of a previous method
“FGMM,” were obtained with L = 2. With “FGMM w/ BIC,” the
optimal number of L for each utterance was selected from the noise
models with L = 1, · · · , 10 based on the criterion of Eq. (11). The
parameters Ite and γ used in the proposed method “IGMM” were
set at 10 and 0.04, respectively.

As seen in the table, the proposed method showed the best re-
sults of the development set for come conditions and of the eval-
uation set for all conditions. In the results of the BIC-based ap-
proach, no improvements were obtained compared with the previous
method due to the inapplicability of the BIC to the structured model
described in [25].

The computational costs of the BIC-based approach were much
greater than those of the proposed method, because various struc-
tured models must be learned for the model section with the BIC. In
contrast, the proposed method is able to decide the model structure
uniquely without considering the possibility of various model struc-
tures. Therefore, the computational cost of the proposed method is
much less than that of the BIC-based approach.

From the viewpoints of both the WER and the computational
cost, we can confirm the effectiveness of the proposed non-stationary

noise modeling technique with the non-parametric Bayesian ap-
proach.
5.2. Experiments with large vocabulary task
5.2.1. Experimental setup
The second evaluation employed a large vocabulary task with 20k
words. The evaluation data were the IPA-98-TestSet which con-
sists of 100 Japanese utterances spoken by 23 males. Three types
of highly non-stationary noise, namely, airport lobby, platform, and
street noise, were artificially added to clean speech with three SNR
levels; 10, 5, and 0 dB. The sampling frequency was 16 kHz.

The feature parameters for the noise suppression were 24
LMFBs that were extracted by using a Hamming window with a
20 ms frame length and a 10 ms frame shift. The training data
for the clean speech model were 33,820 phonetically balanced sen-
tences spoken by 180 Japanese males. Each state of the model had
K = 256 Gaussian components.

The ASR was carried out by employing a weighted finite state
transducer-based decoder [29]. The three-state left-to-right triphone
HMMs were trained by clean speech with the same training data
employed for the clean speech model used for the noise suppression.
There were 2,364 states in total. Each state had 16 Gaussian compo-
nents. The feature parameters for the ASR consisted of 12 MFCCs
and the log energy with their first and second order derivatives. CMN
was applied to each utterance. The language model was a back-off
tri-gram with Witten-Bell discounting. The model was trained using
75 months’ worth of Japanese newspaper articles. The WER of a
clean speech signal was 3.9 %.
5.2.2. Experimental results
Table 2 shows the detailed ASR results of the large vocabulary task.
The parameters of each method were the same in Sec. 5.1. As seen in
the table, the proposed method also achieved the best average WER
even in a different task. These results prove that the proposed method
is robust for unknown noise environments, because it is insensitive
to changes in the ASR task and the noise environment.

6. CONCLUSIONS
This paper presented an unsupervised model estimation method
based on a non-parametric Bayesian approach. The proposed
method consists of the MMSE estimation of noise and a CRP-
based IGMM estimation, and it automatically decides the number
of Gaussian components depending on the characteristics of the
given data. The evaluation results showed that the proposed method
achieves superior performance to the conventional technique of
model structure selection with the BIC. In future, we plan to investi-
gate the expansion of this approach to an IHMM-based noise model
with the hierarchical Dirichlet process [30].
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