
FUSION OF DIVERSE DENOISING SYSTEMS FOR ROBUST AUTOMATIC SPEECH
RECOGNITION

Naveen Kumar1, Maarten Van Segbroeck1, Kartik Audhkhasi1, Peter Drotár2, Shrikanth S. Narayanan1

1Signal Analysis and Interpretation Analysis Lab (SAIL)
Department of Electrical Engineering,

University of Southern California, Los Angeles, CA 90089
2Department of Telecommunications,

Brno University of Technology, Technická 12, Brno
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ABSTRACT

We present a framework for combining different denoising front-

ends for robust speech enhancement for recognition in noisy condi-

tions. This is contrasted against results of optimally fusing diverse

parameter settings for a single denoising algorithm. All frontends

in the latter case exploit the same denoising algorithm, which com-

bines harmonic decomposition, with noise estimation and spectral

subtraction. The set of associated parameters involved in these steps

are dependent on the noise conditions. Rather than explicitly tuning

them, we suggest a strategy that tries to account for the trade-off be-

tween average word error rate and diversity to find an optimal sub-

set of these parameter settings. We present the results on Aurora4

database and also compare against traditional speech enhancement

methods e.g. Wiener filtering and spectral subtraction.

Index Terms— Robust Large Vocabulary Speech Recognition,

Speech Enhancement, Diversity, ROVER

1. INTRODUCTION

Current state-of-the-art speech recognition systems manage to

achieve excellent recognition rates when applied to clean non-

distorted speech. However, it is commonly observed that ASR per-

formance degrades rapidly when operating in challenging real-life

environments with a decreased signal-to-noise ratio. The presence

of noise in the real-world scenarios is almost inevitable and ASR

systems have to be able to robustly cope with a wide range of noisy

environmental conditions.

A common approach to deal with the robustness issue in ASR,

is to add a speech enhancement unit in the front-end to improve the

spectral quality of recorded signal. Most popular methods of speech

enhancement at the signal level include Spectral Subtraction [1], [2],

Minimum Statistics [3] or Wiener Filtering based methods [4]. In

this paper, we select a noise compensation method based on har-

monic decomposition and spectral subtraction [5]. The denoising

algorithm first estimates the noise from the residual part of the in-

put signal obtained after removing the periodicity caused by voiced

speech. The enhanced signal is then obtained by subtracting spec-

trum of the noise estimate from the input speech. The advantage

of this denoising method is that it neither requires a speech activ-

ity detector nor assumes that important prior knowledge of noise is

available, e.g. the stationarity of the noise over a relatively large

time window. Moreover, it is able to reduce unwanted speech degra-

dations by the limited leakage of voicing energy in the spectral sub-

bands of the noise prior to subtraction.

The disadvantage of such a denoising algorithm, and one can

easily generalize this over similar noise reduction methods, is that

it can be very sensitive to parameter settings, thus requiring exten-

sive parameter tuning on a development set. Moreover, it is often

difficult to obtain a single parameter setting that works for all noise

types and conditions. Hence, there have been attempts to combine

results from multiple speech enhancement systems. For example, in

[6] authors try an ensemble learning approach for fusion of time-

frequency masks at the signal level. In this paper, we propose fusion

of multiple diverse denoising algorithms at the hypothesis level for

robust speech enhancement in ASRs. We show that each denoising

algorithm generates diverse hypotheses which can be combined to-

gether using ROVER [7] to obtain an improvement in Word Error

Rate (WER). In addition, we show that a diverse combination of dif-

ferent parameter settings for a single denoising algorithm can also

yield an improvement in WER.

Results obtained on denoising experiments conducted on the

Aurora4 dataset establish the algorithm’s robustness to different

noise types. In addition, we show that a further improvement in

recognition accuracy can be obtained by combining the outputs

from different systems using ROVER [7], which exploits the diver-

sity between them.

The paper is organized as follows: Section 2 explains the ba-

sic concept of the speech enhancement technique and the denois-

ing parameters involved. In Section 3 the dataset and setup of the

KALDI speech recognition toolkit are discussed. Section 4 outlines

the inter and intra-system fusion approaches. We discuss the prob-

lem for finding the optimally diverse subset of parameter settings for

the intra-system fusion case. Experiments and results are presented

in Section 5. Concluding remarks are given in Section 7.

2. SPEECH DENOISING ALGORITHM

In this work, we consider a bandlimited, noisy speech signal x(t)
which is assumed to be the sum of clean speech signal s(t) and

additive noise n(t). Both the noise and speech are assumed to be

uncorrelated non-stationary signals. In order to obtain denoised sig-

nal y(t) we implement the speech denoising algorithm introduced

in [5]. The denoising involves three main processing steps: voicing
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removal, noise estimation and spectral subtraction.

The first step is to remove periodicity from the noisy speech sig-

nal. To obtain an unvoiced signal, the noisy speech is decomposed

into its harmonically related components. Here, an initial pitch es-

timate is computed by the subharmonic summation method [8]. A

pitch synchronous framing is then subsequently applied to the signal

to obtain overlapping segments with the length of two pitch peri-

ods and a single period of frame shift. The unvoiced noisy signal is

computed as a per frame subtraction of the input speech signal and

harmonic component of the input signal, estimated as a sum of sine

and cosine terms of harmonics of the instantaneous pitch. Multipli-

cation by a linear modulation factor further takes into account the

change in amplitude over the duration of the samples. Detailed de-

scription of estimation of modulation parameter and pitch frequency

can be found in [5] or [9]

The short-time sub-band energy of the noise can be estimated

from the minimum statistics of the short-term Fourier spectrum of

x(t). The minimum statistics noise power spectral density estima-

tion approach is based on tracking minima of a short term power

spectral density estimate in frequency sub-bands [10]. This ap-

proach prevents the subtracting of high energy unvoiced speech

regions present in x(t) and eliminate the requirement of a voice

activity detector.

In order to obtain a denoised version of the noisy signal, the sub-

traction rule proposed in [10] is adopted. The spectral magnitudes of

the noise estimate are subtracted from the spectrum of the noisy sig-

nal, taking into account an over-subtraction factor that is computed

as a function of the signal-to-noise ratio per frequency sub band. For

ASR purposes, features can directly be extracted from the denoised

spectrum. Our implementation also foresees a reconstruction of the

denoised speech signal in the time-domain after applying an inverse

Fourier Transform on each frame taking into account the (unaltered)

phase of the noisy signal and a division by the values of the Ham-

ming window.

2.1. Denoising parameters

The result of the denoising procedure is influenced by several param-

eters that can be modified in order to adapt to observed noise condi-

tions. Therefore, in order to build a noise robust denoising module,

it is preferable to find a fixed set of parameters that provide useful

speech enhancement under different noise scenarios. In other words,

instead of tuning parameters for a specific noise type, we would like

to select parameters that provide good overall performance. Another

alternative approach that we later adopt in this paper is to combine

hypotheses from diverse parameter settings to improve the noise ro-

bustness of our system. We discuss a method to select such a subset

of parameters in Section 4.

Some important parameters in noise tracking include: size of

running window for minimum statistics noise estimation(vsm), noise

floor level of aperiodic signal (nfl),the noise reduction factor dur-

ing speech frames (rfs) and the noise factor to compensate for in-

troduced non-linear effect (nsa), optimized using a grid search of

possible values. Specifically, we searched over the grid (vsm, nfl,

rfs, nsa) defined by the product of the sets vsm= [10, 20, 40], nfl=
[0.05, 0.1, 0.2], rfs= [0.25, 0.5, 1.0] and nsa= [0.05, 0.1, 0.125].
The rest of denoising parameters such as the noise reduction factor

during noise frames, upper and lower noise level of voicing were

kept constant during denoising procedure. We choose 23 different

parameters settings p1, . . . , p23 from this grid for tuning and diverse

parameter selection experiments.

3. METHODOLOGY

3.1. ASR Setup using KALDI

For our ASR experiments we use the Kaldi [11] open-source Speech

Recognition Toolkit. Kaldi was built on top of OpenFst [12] li-

braries, with the aim to be flexible, easy to understand, and to pro-

vide extensive Weighted Finite State Transducer (WFST) and math

support.

While training an acoustic model, Kaldi makes use of an up-

date based strategy using previous alignments generated by a sim-

pler model for training a more complicated model. For example,

a monophone training model is first trained using a flat alignment

(i.e. uniform priors). Once trained, the alignments generated by this

model are used to train a triphone model. The process is repeated for

several training steps to obtain a better acoustic model using stan-

dard MFCC +∆+∆∆ features. A brief description of the different

models trained for our experiments is given in Table 1 below.

System Context Transformation Alignment

mono0a Monophone CMN flat
tri1 Triphone CMN mono0a
tri2a Triphone CMN tri1
tri2b Triphone CMN+LDA+ MLLT tri2a
tri3b Triphone CMN+LDA+ MLLT+SAT tri2b

Table 1. Different systems trained using Kaldi. The final results pre-

sented in Section 5 are obtained using system tri3b. (CMN- Cepstral

Mean Normalization, LDA- Linear Discriminant Analysis, MLLT-

Maximum Log-Likelihood Transformation, SAT- Speaker Adaptive

Training)

3.2. Aurora4 Dataset

Our recognition experiments are presented on the Aurora4 database

containing utterances derived from the WSJ0 Wall Street Journal

5k-word dictation task [13] under SNR levels ranging from 5db to

15db. The test data set comprises 7 sets of read speech from 8 differ-

ent speakers, artificially corrupted by additive noise after applying

a P.341 filtering characteristic [14] to clean data samples at 16 kHz.

We conduct our experiments only on the close talking microphone

signal giving us a total of 330 test samples for each of the noise types

: no noise (set 01), car (set 02), babble (set 03), restaurant (set 04),

street (set 05), airport (set 06) and train (set 07). The clean train-

ing set contains 7138 utterances from 83 speakers, also otherwise

known as the SI 84 subset of the WSJ0 dataset. We additionally use

a development set containing 1206 utterances from 10 speakers to

search for an optimally diverse subset of parameter settings for the

HD denoising algorithm. Details of this intra-system fusion strategy

are presented in the next section.

4. FUSION OF DIVERSE SYSTEMS

The fusion of multiple denoising algorithms is done at the level of

ASR hypotheses. We use the Recognition Output Voting Error Re-

duction (ROVER) scheme [7] to perform a weighted combination

of the one-best hypothesis from each system. The weight parame-

ter for ROVER is tuned on the dev set. For our experiments we use

α = 0.7. This shall be henceforth referred to as inter-system fu-

sion since it involves fusion of hypotheses from ASRs with different

denoising frontends viz. Harmonic Decomposition (HD), Wiener
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Fig. 1. Scatter plot showing the relation between ROVER WER on

the test set, average WER and average diversity across datasets. γ is

estimated on the dev set.

Filtering (WF), Cepstral Mean Normalization (CMN) and Spectral

Subtraction (SS) [15].

We also perform intra-system fusion experiments in addition to

the above inter system fusion. We combine hypotheses generated

from different parameter settings of the HD algorithm. Selecting the

best subset of parameter settings for this purpose is an NP-hard prob-

lem and requires a large amount of computation. We thus exploit the

ROVER WER-diversity decomposition approach, presented by Au-

dhkhasi et. al in [16]. They study the relation between diversity

of ASR systems being fused and the ROVER WER. Let E(r, h) be
the WER or Levenshtein distance between the reference transcrip-

tion r and the hypotheses h. Let h∗ be the ROVER fusion of K

hypotheses {h1, . . . , hK}. Then [17] shows that the ROVER WER

approximately decomposes as

E(r, h∗)
︸ ︷︷ ︸

ROVER WER

≈
1

K

K∑

k=1

E(r, hk)

︸ ︷︷ ︸

Average WER

−γ
1

K

K∑

k=1

E(h∗

, hk)

︸ ︷︷ ︸

Diversity

. (1)

The parameter γ is tuned on the dev set. We use the WER com-

puted on the development set as a proxy for the average systemWER

shown in Eqn.(1). However, the diversity term for each fusion sub-

set can be computed on the test set directly since it does not require

reference transcriptions.

Fig.1 shows the relation between ROVER WER, average WER

and average diversity for each subset of parameters being fused.

Each point in the plot corresponds to ROVER fusion of a subset to 4

parameters settings of the HD algorithm. As expected, the ROVER

WER has a stronger correlation in the oracle case when the average

WER is directly computed on the test set (blue scatter plot). The red

scatter plot shows the case when the average WER on the dev set in

instead used as a proxy. Fig. 1 thus suggests that the average WER

and diversity can be used to roughly estimate the fusion WER and

hence choose the best subsystem of parameters.

5. EXPERIMENTAL RESULTS

We first present some initial results in Table 2 using clean train and

the test sets mentioned earlier. The sequential training procedure de-

scribed in Section 3 is applied and for each test set we perform a

decoding using each of the systems in Table 1. The tri3b system,

which trains triphone models and performs LDA and MLLT trans-

forms of the features, along with Speaker Adaptive Training (SAT),

achieves the best WER consistently. Henceforth, all presented re-

sults are trained using this best system.

The ASR results corresponding to each denoising algorithm are

presented in Table 3. The extracted features for all denoised au-

dio streams, are first mean normalized (CMN). Hence, the baseline

numbers are obtained using normalization of the features only and

are denoted by CMN. The best parameter setting for the HD denois-

ing algorithm shown in the last row is tuned on a small subset of the

test set comprising first 10 utterances by number from each of the 8

speakers (80 utterances in all). It is important to mention here that

this is done only to adapt the HD denoising algorithm to the acoustic

conditions present in the test set, as the denoising algorithm doesn’t

really make use of any speaker/ sentence information. We select the

best parameter setting among {p1, . . . , p23} based on the average

WER across all noise types. In addition, since the HD algorithm

is known to produce non-linear artifacts, the clean condition training

data was also preprocessed by the implemented method to match test

conditions.

Results indicate that the implemented denoising algorithm (HD)

is comparable in performance to the baseline algorithms on most of

the noise types. The HD denoising algorithm in fact provides an

improvement in performance on the non-stationary noise types like

“babble” (03) and “train” (07). The degradation in performance on

the “clean” (01) and “car” (02) test sets, can be attributed to the

inherent distortion caused by the denoising algorithms and the fact

that the parameters for our method were tuned to give a low overall

WER. This leads to the important observation that with the choice of

a single optimal parameter setting the implemented system is unable

to adapt to all noise types at once. This motivates our next approach

for fusion of diverse denoising front-ends.

5.1. Fusion of diverse denoising front-ends

The systems HDδk in Table 4 denote different intra-system ROVER

fusions for diverse parameter settings of the HD algorithm. HDδ0

corresponds to the first oracle system with the best ROVER WER

E(r, h∗) for 4 parameter settings on the test set. The WER used for

each system is the average for different noise types.

For the HDδ1 system, we use average of the WERs due to each

individual system, computed directly on the test set. The aver-

age WER is then used to estimate the ROVER WER according to

Eqn.(1). The system HDδ2 uses average WER computed on the dev

set instead, for selecting the best 4 parameter subsystem. To put

things in perspective, we also present the performance of the HD

algorithm in the first row, with the parameter settings tuned on the

❍
❍
❍
❍❍

system

test
01 02 03 04 05 06 07 Avg.

mono0a 13.8 33.5 49.5 57.6 54.9 47.7 55.3 44.6

tri1 6.4 17.6 31.9 40.5 39.6 30.8 40.3 29.6

tri2a 5.7 18.1 32.6 40.7 39.0 30.2 39.5 29.4

tri2b 5.5 16.0 37.0 46.1 42.1 35.5 41.8 32.0

tri3b 4.2 9.4 24.1 31.2 25.9 21.4 28.1 20.6

Table 2. Word Error Rate (WER) obtained using clean training nois-

ing and only Cepstral Mean Normalization of the features.
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Aurora4, 16kHz, clean condition training.

Close Talk

Test 01 02 03 04 05 06 07 Avg.

CMN 4.2 9.4 24.1 31.2 25.9 21.4 28.1 20.6

WF 4.4 9.7 20.9 26.6 23.0 22.4 23.6 18.7

SS 4.5 10.8 22.9 24.9 22.9 23.0 24.0 19.0

HD∗ 6.6 12.6 17.0 24.1 22.7 22.7 19.2 17.8

Table 3. Word error rate (in %) on the Aurora4 test sets using the

proposed and baseline denoising algorithms. HD∗ corresponds to

the HD denoising algorithm with parameters tuned on a small subset

of the test set.

dev set instead.

The last two rows in Table 4 show the WER obtained by word

frequency based ROVER (wfR) and confidence weighted ROVER

(cfR) of all denoising algorithms (CMN, WF, SS, HD). For the HD

algorithm we use the same parameter settings as the HD∗ system

(Table 3 Row 4). Here, the noisy transcriptions corresponding to

the four denoising methods are combined to achieve a further reduc-

tion in WER with respect to the use of a single ASR system. This

probably hints at the complementary nature of each system allow-

ing ROVER to combine their strengths. The best average WER of

14.2% on Aurora4 test set 01-07, is comparable to the performance

obtained by state-of-the-art (and more complex) noise compensation

methods.

6. DISCUSSION

The intra-system ROVER fusion results in Table 4 show that there

is merit to combining hypotheses from ASRs driven by different

parameter settings of a single denoising algorithm. The systems

HDδk are able to improve the performance of the HD algorithm on

the clean (01) and car (02) test sets, by fusing results from other

parameter settings that perform better on these noise types. In addi-

tion, the performance of the HDδ1 system is comparable to the best

intra-system ROVER result (HDδ0 ). This corroborates the diversity-

decomposition based strategy proposed for selecting the optimal

subset of parameter settings. The results of HDδ2 exhibit a similar

trend, in spite of a mismatch between the dev set and the test set

average WERs. This mismatch is owing to the dev set vocabulary

containing out-of-vocabulary verbalized punctuations such as the

one shown in the example below.

id: (050o0209)

REF: finally ,COMMA japanese business is moving

to meet the demand .PERIOD

HYP: finally COMMON japanese business is moving

to meet the demand PERIOD

Clearly, the proposed denoising system based on ROVER fusion

of diverse parameter settings is more versatile compared to the HD

denoising system based on a single extensively tuned parameter set-

ting (Table 4 Row 1). The disadvantage for the latter system results

from its tendency to over-adapt to the noise conditions in the dev

set. Hence, even the system HDδ2 based on an automatically found

subset of parameter settings improves the performance over this op-

timally tuned system based on a single parameter setting.

Although, diverse combination of different parameter settings

helps, we observe that the inter-system ROVER fusion systems out-

Aurora4, 16kHz, clean condition training.

Close Talk

Fusion 01 02 03 04 05 06 07 Avg.

HD 7.3 18.9 24.5 29.6 28.6 28.5 25.1 23.2

HDδ2 5.9 13.5 19.1 25.9 24.2 26.0 19.9 19.2

HDδ1 5.7 10.7 16.0 22.8 20.3 21.5 17.5 16.4

HDδ0 5.5 10.9 16.3 22.5 19.5 21.7 17.6 16.3

wfR 4.1 7.9 16.9 22.1 19.0 18.0 18.8 15.3

cfR 3.6 6.9 16.1 21.2 18.2 16.4 18.6 14.2

Table 4. WER reported on the Aurora4 test set by combining dif-

ferent denoising algorithms using ROVER. Combining outputs from

each system using ROVER consistently improves theWER in all test

sets compared to the best performing individual system.

perform the intra-system ROVER fusion systems. This can be at-

tributed to be the inherent lack of diversity among chosen candidate

parameter settings. A choice of parameter settings keeping their di-

verse combination in mind might be a better choice and is an open

problem.

7. CONCLUSIONS

We present a framework for combining hypotheses from different

denoising algorithms in order to achieve robust ASR performance in

noisy conditions. We show that even in a single system case, ROVER

fusion of speech enhancement with diverse parameter settings can

be used to create diversity and obtain robustness to different noise

types. We propose a strategy to find an optimally diverse subset of

such parameter settings.

Results on the Aurora4 database indicate that the proposed

method for combining different denoising algorithms is robust

across different noise types and conditions. The obtained WER is

comparable to baseline systems and fusion of different parameter

settings is useful when dealing with a dataset of unknown or mixed

noise type.

In the future, we would like to substitute the diversity compu-

tation with an approximate metric thereby eliminating the need for

computing the ROVER WER for all parameter subsets on the dev

and test sets.
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