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ABSTRACT

This work analyzes the influence of reverberation on automatic

speech recognition (ASR) systems and how to compensate its in-

fluence, with special focus on the important acoustical parameters

i.e. room reverberation time T60 and clarity index C50. A multi-

layer perceptron (MLP) using features of a spectro-temporal filter

bank as input is employed to identify the acoustic conditions span-

ning various reverberant scenarios. The posterior probabilities of

the MLP are used to design a novel selection scheme for adaptation

in a cluster-based manner and for system combination achieved by

recognizer output voting error reduction (ROVER). A comparison of

word error rates is performed considering different training modes,

and an average relative improvement of 7.1% is obtained by the

proposed system compared to conventional multistyle training.

Index Terms— Automatic speech recognition (ASR), adapta-

tion, reverberation, room reverberation time, clarity index

1. INTRODUCTION

Automatic speech recognition (ASR) systems have been substan-

tially improved in the last few decades, which resulted in a large

number of applications for mildly reverberant conditions, cf. e.g. [1,

2]. However, in scenarios with time-variant or a high amount of re-

verberation, ASR error rates are dramatically increased despite of

the advances. This is especially true for mismatched training and

test conditions that arise from ambient noises, variations of speaker

characteristics, and channel distortions, as well as reverberation that

is caused by multiple reflections inside an enclosed space and is usu-

ally modeled by a room impulse response (RIR). Since reverberation

causes spectral changes as well as temporal smearing of consecutive

frames, the above-mentioned mismatches are especially critical in

the context of speech processing [3, 4].

One straightforward approach to use an ASR system in a new

environment is to retrain the recognizer with new training data that

has been collected in that new room, enabling an optimal match be-

tween the model and the data to be recognized. However, recording

additional data is often not feasible and time-consuming at least. An

alternative is to employ an adaptation scheme [5, 6, 7] to alleviate the

mismatch of acoustic conditions between training and test data with
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a limited amount of data, as originally proposed for speaker adapta-

tion. Several adaptation strategies have been adopted and evaluated

to increase ASR robustness in reverberant environments by adapting

the mean vectors of the clean hidden Markov models (HMMs) [8,

9, 10], where the state-level reverberation representation in HMMs

is determined either by a maximum likelihood (ML) estimator with

a few known calibration utterances [8], or by a strictly exponential

energy decay model based on the room reverberation time T60 [9],

while [10] turned to a statistical reverberation model in a feature-

domain representation. Although they surpass the clean HMMs with

a reduced quantity of adaptation data compared to conventional max-

imum likelihood linear regression (MLLR) [7] adaptation, still they

can not be competitive to the ideal matched reverberant HMMs, even

not to the multistyle trained models [11] in severely reverberant en-

vironments. Instead of assuming a reverberation model to tailor the

HMMs to specific reverberant condition, this paper pursues an al-

ternative approach that combines (i) the estimation of room acous-

tic parameters, (ii) the selection of appropriate ASR systems from a

multitude of pre-trained adapted models, and (iii) a subsequent com-

bination of the system outputs.

The estimation of room parameters (i) has been investigated in

an earlier study [12], in which auditory features were employed to

estimate T60 from acoustic speech signals. Complex 2D-Gabor fea-

tures inspired by findings in the primary auditory cortex of mammal

species were used to extract spectro-temporal patches of the signal

of interest. T60 estimation was carried out with a multi-layer percep-

tron (MLP). This work exploits this estimate to improve ASR sys-

tems, and at the same time extends our previous approach to the esti-

mation of the distance information between the speaker and the mi-

crophone, which is quantified by means of the clarity index C50 [13].

The posterior probabilities of classes obtained from the MLP (corre-

sponding to different spatial configurations) are employed to select

appropriate models for speech recognition (ii), where cluster-based

adaptation achieved by MLLR [7] is employed to generate a series

of cluster-dependent models. Furthermore, model-based feature nor-

malization by constrained MLLR (CMLLR) [14] is sequently ap-

plied to these cluster-dependent models. Finally, a system combi-

nation (iii) is performed that is based on recognizer output voting

error reduction (ROVER) [15]. The outputs of several models (that

are considered to contribute to speech recognition through step (ii)

and potentially carry complementary information) are integrated by

ROVER to further enhance ASR performance.

The remainder of this paper is organized as follows: Section 2

introduces the T60 and C50 estimation based on MLPs and spectro-

temporal modulation filtered features by 2D-Gabor filters. Adapta-
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tion schemes and ROVER are briefly described in Section 3. The

experimental procedure, the proposed selection scheme and results

of estimation and ASR systems are addressed in Section 4. Conclud-

ing remarks are given in Section 5.

2. ROOM ACOUSTICAL PARAMETER ESTIMATION

The room reverberation time T60 [16] is one important characteristic

in room acoustics, which is defined as the time interval for a 60 dB

decay of the sound energy. It is often used as a criterion for speech

recognition in reverberant environments. However, due to its inde-

pendence on the position of the source and microphone within the

room, T60 alone is not sufficient to fully describe the influence of re-

verberation on the recognition performance of state-of-the-art ASR

systems [2]. It was shown that the energy ratio of the early part of

an RIR, i.e. the direct sound and the early reflections, to its late re-

verberant tail is highly correlated to the ASR performance [17, 18].

This ratio is usually denoted as clarity index with a cut-off boundary

of 50 ms [13],

C50 = 10 log10

(

∑k50

k=1
|h[k]|2

∑

∞

k=k50+1
|h[k]|2

)

, (1)

which mainly reflects the distance information between the sound

source and the microphone for a given room. In (1), h[k] denotes the

RIR for the discrete time index k, and k50 = ⌈0.05 · fs⌉ is the time

index after 50 ms at sampling rate fs.

2.1. Estimation of T60 and C50

Since it is not sufficient to separately consider either T60 or C50

for an ASR system design, a straightforward method is to jointly

identify both parameters representing the room properties denoted

as (T60, C50). As shown in [12], spectro-temporal modulations ex-

tracted from signals using a 2D-Gabor filter bank [19, 20] are well-

suited for estimating T60. This was achieved by using a multi-layer

perceptron (MLP) as a classifier, where the output neurons corre-

spond to specific T60 value ranges. Diagonal Gabor filters were es-

pecially sensitive to reverberation effects. The joint identification of

(T60, C50) is therefore based on the setup outlined in [12]. The tem-

poral context considered by the MLP is limited to 1 frame, 600 input

neurons are used (corresponding to the Gabor feature dimension) as

well as 400 hidden units. For the present study, the number of output

neurons is 6, which is given by the different (T60, C50) pairs in the

training data.
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Fig. 1. Overview of the proposed system structure. The upper branch

relates to the experimental setup for (T60, C50) estimation in the

MLP network, while the lower branch illustrates the decisions of the

proposed selection scheme transferred to cluster-dependent models

either to select the matched model by pmax or to select beneficial

models for ROVER by pc to further reduce the WER.

2.2. System Structure

The MLP is trained using 2-D Gabor features F obtained from a re-

verberant version of the clean speech (x = s ∗ h) with frame-wise

labels for one class corresponding to that utterance. After the train-

ing procedure, frame-wise posterior probabilities P for all classes

are obtained by the MLP forward run, which merge to the class-wise

probability vector p averaged over time, as depicted in Fig. 1 where

the upper branch gives an overview of the estimation procedure in

the MLP network. A selection scheme (cf. Section 4.2) is proposed

by leveraging the class-wise output probabilities p, to select models

from the adapted cluster-dependent models and for system combina-

tion achieved by ROVER, as briefly described in the following.

3. ADAPTATION AND SYSTEM COMBINATION

The aim of adaptation is to improve ASR performance either by

feature normalization or by adapting the HMMs toward a particular

test acoustic condition. Since there are various modes and different

schemes for adaptation/adaptive training [21], cluster-based adapta-

tion and model-based feature normalization are adopted in this task.

3.1. MLLR for Cluster-based Adaptation

Maximum likelihood linear regression (MLLR) was initially devel-

oped for speaker adaptation [7], which uses the maximum likeli-

hood (ML) criterion to estimate a linear transform to adapt Gaussian

mean and variance parameters of HMMs, i.e.,

µ̂ = Aµ+ b ; Σ̂ = HΣH
T
, (2)

where µ̂ and Σ̂ are the adapted mean vector and covariance matrix

from the pre-trained mean components µ and covariance matrix Σ,

respectively. The transform parameters A, b, and H are typically

calculated by expectation maximization (EM) in an iterative pro-

cess [22]. Note that only mean adaptation is applied in the following

since pilot experiments have shown that variance adaptation does not

help to increase the performance. In contrast to model-based adapta-

tion which uses only one standard set of HMMs, cluster-based adap-

tation is based on a series of sets of HMMs as applied in this work. In

general, several cluster-dependent models are built according to vari-

ant test acoustic conditions, e.g. speaker-dependent (SD) [5], which

herein are determined by different combinations of (T60, C50).

3.2. CMLLR for Model-based Feature Normalization

As an alternative scheme to adapt both, mean vector and covariance

matrix, constrained MLLR (CMLLR) [14] forces the linear trans-

form of covariance matrix to be the same as the mean vector, denoted

as follows compared to (2),

µ̂ = Acµ+ bc ; Σ̂ = AcΣA
T
c . (3)

It is straightforward to apply the transform Ac to the feature

level [23] as model-dependent feature normalization, which is also

closely related to MLLR model-based transform as described before.

3.3. System Combination

National institute of standards and technology (NIST)’s ROVER [15]

has been shown to be effective to further reduce the word error

rate (WER) by combining the outputs of multiple recognizers. Note

that it is important to select beneficial and complementary recog-

nizers to obtain the improved results among the cluster-dependent
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HMMs. Instead of generating a new adapted model using in-

terpolation weights, e.g. in cluster-based adaptive training [24],

alternatively, a selector based on the MLP posterior probabilities is

proposed to assist the model selection for ROVER, as illustrated by

the lower branch in Fig. 1.

4. EXPERIMENTS AND RESULTS

We use the WSJCAM0 British English corpus [25] as database of

clean speech utterances. It contains 7861 utterances for training and

another 742 for testing at a sampling rate of 16 kHz. Overlapping

speech segments of 25 ms length with 10 ms shift are used for log-

mel-spectrogram calculation and feature extraction. The RIRs are

measured in real-world scenarios [26], including 3 different rooms

and 2 different positions, representing 3 types of T60 and 2 types

of C50, respectively. Reverberation times of the small, medium and

large volume rooms are 218, 507 and 710 ms, respectively, calcu-

lated using [16]. The distances between the source and the micro-

phone are about 50 cm for the near position and 200 cm for the far

position. Table 1 lists the room acoustic parameters.

4.1. Estimation Performance

48 diagonal 2D-Gabor filters [12] are applied to the log-mel-

spectrogram to extract feature vectors for the MLP classifier. They

cover temporal modulations from 2 to 25 Hz and spectral modula-

tions from -0.25 to 0.25 cycle/channel, respectively. Adjusting the

parameter setting from a sampling rate of 8 kHz in [12] to 16 kHz, 31

mel-frequency channels for mel-spectrogram calculation are used,

so that 600-dimensional feature vectors are obtained. For details on

Gabor feature extraction, the reader is referred to [20].

Room T60(ms) C50(dB) Class Eest(%) Avg. pmax

Small 218
near 30.5 C1 1.48 0.80

far 20.1 C2 0.27 0.84

Medium 507
near 17.3 C3 0.13 0.76

far 9.1 C4 0.00 0.80

Large 710
near 14.9 C5 4.99 0.61

far 6.8 C6 0.00 0.88

Table 1. Room acoustic parameters of the measured RIRs for eval-

uation. MLP estimation performance is measured by the average

estimation error rate (Eest %) based on a winner-takes-all rule and

the average maximal probabilities pmax for acoustic configurations.

As summarized in Table 1, according to a winner-takes-all rule,

i.e. class-wise probability pmax, the estimation error rates (Eest) of

all 6 classes of (T60, C50) are smaller than 5% (average Eest is

1.15%), which verifies the effectiveness of the MLP classifier to dis-

tinguish reverberation effects from different room configurations of

(T60, C50). An analysis of error patterns suggests that of the two

parameters under consideration, C50 emerges as the dominant one.

Fig. 2 (b) shows a confusion matrix, with the off-diagonal elements

corresponding to errors. The observed errors mainly arise from the

contiguous C50 values, while even the same value of T60 shows less

impact to the classifier decision.

4.2. Selection Scheme

The winner-takes-all decision rule based on pmax is used as the

selector for the aforementioned Eest evaluation, which can be

also considered as the selector to the matched HMM from the

adapted cluster-dependent models, while other HMMs will not be
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Fig. 2. (a) estimation error example from true class C1 to estimated

class C3; (b) estimation confusion matrix according to Table 1 (di-

agonal/correct elements set to 0 for visibility of the error rates); (c)

estimation correct example from true class C5 to estimated class C5.

considered. However, for system combination, the discarded mod-

els may carry useful messages, either due to the estimation error,

e.g. Fig. 2 (a) omitting the true matched model, or because of the po-

tential beneficial information during recognition, e.g. Fig. 2 (c) with

similar sensitivity to reverberation. Therefore, in order to select as

many beneficial models as possible for ROVER combination (cf. the

lower branch in Fig. 1), a dedicated selection scheme is proposed

by means of a threshold value ∇p for the relative difference to the

maximal probability pmax, represented as

arg
c∈C

(

pmax − pc

pmax

≤ ∇p

)

, (4)

where pc denotes the class-wise probability of any class c from all

defined classes C. A choice of ∇p = 0.0 corresponds to the winner-

takes-all rule, while ∇p = 1.0 means to choose all the cluster-

dependent models. Pilot experiments have shown that ∇p = 0.5 is

a reasonable compromise that effectively selects a sufficient number

of models (which usually includes the matched cluster-dependent

model that corresponds to the true acoustic configuration).

4.3. ASR Performance

Mel-frequency cepstral coefficients (MFCCs) with delta and double-

delta coefficients (dimension of 39) together with cepstral mean and

variance normalization (CMVN) are employed in the ASR ex-

periments. Multistyle training [11] is applied on the basis of all

non-homogeneous data built by the clean training utterances con-

volved with the RIRs from Table 1, resulting in 6 cluster-dependent

models after cluster-based adaptation. Context-dependent triphone

HMMs with 3 states per model are applied together with 12 Gaus-

sian mixture models (GMMs) per state and a language scaling factor

of 14.0 for the 5k-word-bigram language model. MLLR and CM-

LLR schemes involve two passes [27]. The first pass is a global

adaptation that builds a global transform used in the second pass, for

which a regression class tree with up to 256 leaf nodes is generated.

The ideal matched training models are generated by sharing exactly

the same reverberant condition between training and test data. The

amount of the training data is kept the same for different training

modes and adaptation strategies for the sake of fair comparison.

As seen in Table 2, ASR systems do suffer from the reverber-

ation effects. Even though the ideal matched training models are

applied, WERs in severely reverberant environments are at a high

level, e.g. 31.70% for class C6 with (T60, C50) of (710 ms, 6.8 dB).

In general, the WER raises as T60 increases and C50 decreases. C50

has a higher impact than T60 as seen e.g. from WER comparison be-

tween C4 and C5, which is in line with the error patterns observed

for the MLP estimates.

Cluster-dependent HMMs are generated based on MLLR mean

adaptation in a supervised mode, i.e. the transcription of the adap-

tation data is known during multistyle training. The results with the
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Test/Class C1 C2 C3 C4 C5 C6

clean 15.44 26.07 28.49 61.76 36.46 78.58

multistyle 15.00 16.91 18.31 27.17 21.02 35.78

o
ra

cl
e

ideal matched 12.29 15.11 16.84 24.66 19.28 31.70

mllr C1 14.03 17.21 18.39 29.26 21.51 38.03

mllr C2 15.04 16.53 18.99 27.26 21.98 36.49

mllr C3 14.76 17.82 17.87 28.24 20.48 37.12

mllr C4 16.21 17.75 19.60 26.55 22.53 35.41

mllr C5 15.14 18.15 18.29 28.47 20.68 37.15

mllr C6 17.04 18.71 19.94 27.20 23.26 34.15

mlp ∇p = 0.0 14.08 16.53 17.87 26.55 20.70 34.15

ro
v
er ∇p = 0.5 14.00 16.52 17.84 26.52 20.53 34.15

∇p = 1.0 14.82 17.04 18.18 27.18 20.78 35.94

Table 2. Word error rate (WER %) of each test class with clean-

condition, multistyle and ideal matched training modes, as well as

the MLLR mean cluster-based adaptation with the oracle method

and the proposed selection scheme ∇p = 0.0. ROVER is used for

system combination with selection schemes ∇p = 0.5 and 1.0.

oracle method (the reverberant condition for test data is assumed to

be known in advance) in Table 2 show that a match of the cluster-

dependent model with its test condition results in the lowest WERs.

On the other hand, the performance is prone to be even worse than

the results of multistyle training when some mismatched adapted

models are selected, especially when their (T60, C50) values dif-

fer significantly, which indicates that a smart model selector is im-

portant. By means of the proposed selector with ∇p = 0.0, each

test utterance is classified to the specific cluster-dependent model

for recognition. The comparable WERs to the oracle situation tes-

tify the effectiveness of this selector based on MLP estimator for

optimal matched model selection among cluster-dependent models.

Interestingly, some mismatched models also fit other test sets,

e.g. test C5 achieves even lower WER when using an adapted HMM

from C3, most likely due to their similar C50 condition as shown in

Table 2 and Fig. 2 (c). Motivated by this, ROVER is used to com-

bine these beneficial models which still work fine compared to the

matched one. In other words, these beneficial models can be de-

rived from the similarities of the class-wise posterior probabilities

to pmax as described in (4). Results show that the model selector

with ∇p = 0.5 offers ROVER the potentially beneficial cluster-

dependent models to further reduce WERs. When increasing the

threshold further to ∇p = 1.0, detrimental models are selected as

well, which results in average performance.

+ cmllr C1 C2 C3 C4 C5 C6

o
ra

cl
e multistyle 13.95 16.25 17.59 25.94 20.82 33.08

mllr matched C 13.56 15.42 17.54 25.59 20.45 32.71

mlp ∇p = 0.0 13.58 15.42 17.54 25.59 20.42 32.71

ro
v
er ∇p = 0.5 13.53 15.39 17.45 25.56 20.36 32.68

∇p = 1.0 13.70 15.92 17.40 25.33 20.31 32.66

Table 3. Word error rate (WER %) of each test class with an unsu-

pervised CMLLR adaptation on the basis of multistyle training and

matched cluster-dependent adapted models with the oracle method.

MLP-based scores for one selected model (∇p = 0.0) are reported,

as well as WERs for ROVER-based systems that consider a medium

number of system outputs (∇p = 0.5) or all models (∇ = 1.0).

Finally, we explore the integration of an unsupervised adapta-

tion scheme in the cluster-based adaptation, in which the recogni-

tion results of the test data in a batch mode (all the adaptation data

is available before adaptation) will be used to further adapt the mod-

els that recognize the test data again. CMLLR is an established

method for this adaptation or model-based feature normalization,

and hence applied for the following experiments. Under this batch

mode, compared to the oracle method to group all test data by a-

priori known reverberant condition, the proposed system applies the

selector ∇p = 0.0 to classify the test data into 6 classes, so as

to determine the CMLLR adaptation transforms w.r.t. each cluster-

dependent model. CMLLR adaptation reduces the WERs by addi-

tional 1 to 2% (Table 3) compared to the corresponding results in

Table 2. Still, WERs with the matched model selector ∇p = 0.0 be-

have nearly the same as the oracle method, again indicating that the

proposed selector is efficient for optimal matched cluster-dependent

model selection. In contrast to results in Table 2, the best results are

obtained when ROVER considers all models (∇p = 1.0) for C3-

C6. It seems, that although the unsupervised adaptation introduces a

hypothesis bias [21], at the same time it results in increased comple-

mentary information when applied to cross-adapt different cluster-

dependent models so that ROVER can benefit from those comple-

mentary recognition outputs after combining more recognizers.
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lector, and its enhanced scenario by CMLLR, as well as the ideal

matched training model. The performance without reverberation

(clean HMMs and clean test data) is 11.06% (dashed line).

The reduced WERs as mentioned above by the synergy of

matched cluster-dependent model selection and system combination

based on the proposed selection scheme are summarized and illus-

trated in Fig. 3. Compared to multistyle training, the ideal matched

training system reaches a relative improvement of 10.9%, which can

be seen as an upper bound for the given task. For the proposed sys-

tem that does not rely on a-priori information but is alternative to the

oracle matched cluster-dependent model mode, the average relative

improvements are 3.5% and 7.1% when applying MLLR adaptation

together with ROVER and further enhancement by CMLLR, respec-

tively. The ideal scores could be further approached by modeling the

neighboring reverberant feature vectors to be conditional dependent

in HMMs according to [28, 4].

5. CONCLUSION

This contribution combines the estimation of the room acoustic pa-

rameters T60 and C50 with the adaptation and system combination

for ASR systems in reverberant environments. Results indicate the

clarity index C50 to be of higher importance than T60 to measure

the reverberation effects to ASR. By means of an MLP-based es-

timator, a novel selection scheme has been proposed to select the

optimal cluster-dependent model to reach the performance of an or-

acle matched-model system based on MLLR cluster-based adapta-

tion and CMLLR model-based feature normalization. As well, it as-

sists ROVER to further reduce WERs by combining the recognizer

outputs from optimal cluster-dependent models and models contain-

ing complementary information to approach the performance of the

ideal matched training system. Compared to the multistyle training

approach, a relative WER improvement of 7.1% is obtained by the

proposed strategy for ASR systems in reverberant environments with

T60 ranging from 218 to 710 ms and C50 from 6.8 to 30.5 dB.
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