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ABSTRACT

Uncertainty decoding has been successfully used for speech

recognition in highly nonstationary noise environments. Yet,

accurate estimation of the uncertainty on the denoised sig-

nals and propagation to the features remain difficult. In this

work, we propose to fuse the uncertainty estimates obtained

from different uncertainty estimators and propagators by lin-

ear combination. The fusion coefficients are optimized by

minimizing a measure of divergence with oracle estimates on

development data. Using the Kullback-Leibler divergence,

we obtain 18% relative error rate reduction on the 2nd CHiME

Challenge with respect to conventional decoding, that is about

twice as much as the reduction achieved by the best single un-

certainty estimator and propagator.

Index Terms— Noise robust ASR, uncertainty handling

1. INTRODUCTION

Automatic speech recognition (ASR) remains challenging in

everyday nonstationary noise environments. Robust ASR ap-

proaches [1] may be classified as model compensation [2],

feature compensation [3] or hybrid techniques [4–6]. Uncer-

tainty decoding [7–14] has emerged as a promising hybrid

technique whereby speech enhancement is applied to the in-

put noisy signal and the enhanced features are not considered

as point estimates but as a Gaussian distribution with time-

varying variance or uncertainty that is used to dynamically

adapt the acoustic model on each time frame for decoding.

Uncertainty decoding may be used with feature-domain or

spectral-domain enhancement. We adopt the latter approach,

as it benefits from multichannel information and it has led to

the best ASR accuracy in a real domestic environment as eval-

uated by the CHiME Challenge [15]. Following [9,10,13], we

estimate the uncertainty in the spectral domain and we subse-

quently propagate it to the feature domain.

Various uncertainty estimators on the spectral domain

have been proposed based on statistical models or on heuris-

tics [9, 10, 13]. Several feature domain uncertainty propaga-

tors have also been found based on moment matching [2], on

the unscented transform [9], or on vector Taylor series [16].

While the latter were shown to be accurate [10], we found the

former to be somewhat inaccurate experimentally so that the

ASR performance remains lower than the one that would be

achieved with perfect oracle uncertainty estimates [7, 17].

In this work, we introduce a fusion framework to improve

uncertainty estimates by linearly combining different uncer-

tainty estimators and propagators. The fusion coefficients are

obtained by minimizing some measure of divergence with or-

acle uncertainty estimates on development data. We evaluate

the impact on ASR performance for different divergences on

Track 1 of the 2nd CHiME Challenge [15].

The paper is organized as follows. Section 2 introduces

a number of existing uncertainty estimators and propagators.

The fusion framework and the estimation of the fusion coef-

ficients are described in Section 3. ASR results are discussed

in Section 4. We conclude in Section 5.

2. BACKGROUND

2.1. Spectral domain uncertainty estimation

Multichannel speech enhancement techniques typically oper-

ate in the spectral domain by means of the short time Fourier

transform (STFT) or some auditory-motivated transform. The

observed multichannel signal xfn is assumed to be the mix-

ture of a single-channel target speech signal sfn and a noise

signal bfn, with f denoting the frequency index and n the

time frame index. Speech enhancement is achieved by ap-

plying a multichannel filter, that can be decomposed into a

multichannel spatial filter (a.k.a., a beamformer) yielding a

single-channel signal xfn followed by a single-channel spec-

tral post-filter [3, 9]. In the following, we employ the Wiener

post-filter: the mean µ̂sfn
of sfn is estimated as [10, 17]

µ̂sfn
=

vsfn

vsfn
+ vbfn

xfn (1)

with vsfn
and vbfn

the estimated short-term speech and noise

power spectra. The goal of uncertainty estimation is to quan-

tify how much the true (unknown) value of sfn deviates from
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µ̂sfn
using its variance denoted as σ̂2

sfn
. In the following, we

use the terms variance and uncertainty interchangeably.

2.1.1. Kolossa’s estimator

Kolossa et al. [9] assumed the uncertainty to be proportional

to the squared difference between the enhanced signal and the

mixture

σ̂2

sfn
= α|µ̂sfn

− xfn|2 (2)

where the scaling factor α is found by minimizing the Eu-

clidean distance between the estimated uncertainty and the

oracle uncertainty σ2

sfn
defined hereafter in (3.1).

2.1.2. Wiener estimator

Astudillo [10] later proposed to quantify uncertainty by the

posterior variance of the Wiener filter:

σ̂2

sfn
=

vsfn
vbfn

vsfn
+ vbfn

. (3)

2.1.3. Nesta’s estimator

Recently, Nesta et al. [13] obtained a different estimate based

on a binary speech/noise predominance model1:

σ̂2

sfn
= p̂fn(1− p̂fn)|xfn|2 (4)

where p̂fn =
√
vsfn

/(
√
vsfn

+
√
vbfn

). The behavior of the

three estimators is illustrated in Figure 1.

2.2. Feature domain uncertainty propagation

The estimated means and variances of sfn are stacked into

a mean vector µ̂
sn

and a diagonal covariance matrix Σ̂sn in

each time frame n and they are propagated to the features. We

use 39-dimensional feature vectors cn consisting of 12 Mel-

frequency cepstral coefficients (MFCCs), the log-energy, and

their first- and second-order time derivatives.

2.2.1. VTS propagator

Vector Taylor series (VTS), which was first introduced for an-

other purpose in [16], consists of linearizing the MFCC trans-

form by its first-order Taylor expansion and of propagating

uncertainty through this linear transform [17]. Denoting by

E the diagonal matrix of pre-emphasis coefficients, by M

the Mel-filterbank matrix, by D the discrete cosine transform

(DCT) matrix, and by L the diagonal matrix of lifter coeffi-

cients, we obtain the mean µ̂MFCCn
and the covariance matrix

Σ̂MFCCn
of the MFCCs as [18]

µ̂MFCCn
= LDlog(ME|µ̂

sn
|) (5)

Σ̂MFCCn
= LDDiag(1/µ̂MELn

)Σ̂MELn
(LDDiag(1/µ̂MELn

))T

(6)

1This formula was initially defined for the variance of |sfn| [13], however

we found it beneficial to use it for the variance of sfn instead.
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Fig. 1. Behavior of the uncertainty estimators.

where µ̂MELn
= MEµ̂|sn|, Σ̂MELn

= MEΣ̂|sn| (ME)
T

,

µ̂|sn| and Σ̂|sn| are the mean and the covariance matrix of

|sn| which are derived from µ̂
sn

and Σ̂sn using the statistics

of the Rice distribution [10], Diag (·) transforms a vector into

a diagonal matrix, T denotes matrix transposition, and the

logarithm, the division, and the magnitude are taken element-

wise. Note that µ̂MFCCn
is deterministically computed, so it

does not depend on the chosen uncertainty estimator. Simi-

lar calculations are performed for the log-energy and for the

mean and the covariance matrix of the dynamic coefficients

as detailed in [18]. Cepstral mean subtraction is applied and

only the diagonal of the covariance matrix is eventually re-

tained [10]. The resulting mean and variance of the ith feature

in frame n are denoted as µ̂cin and σ̂2

cin
, respectively.

2.2.2. MM and UT propagators

Alternative uncertainty propagation techniques include the

unscented transform (UT) and moment matching (MM), also

known as the log-normal transform, which provide other for-

mulas to propagate µ̂|sn| and Σ̂|sn| through the logarithm

of the MFCC transform [2, 9, 10]. Both µ̂cin and σ̂2

cin
then

depend on the chosen uncertainty estimator.

3. PROPOSED FUSION FRAMEWORK

Uncertainty decoding has the potential to improve ASR per-

formance on noisy data close to that on clean data as shown by

oracle experiments [7, 17]. Yet, the improvement observed in

practical scenarios is typically lower due to the inaccuracy of

the uncertainty estimators. Improving existing estimators is

therefore crucial to unleash its full potential. Figure 1 shows

that the three estimators introduced in Section 2.1 have differ-

ent behaviors. Kolossa’s estimator decreases when the speech

power spectrum increases. The two other estimators reach a

maximum when the power spectra of speech and noise are

equal but Nesta’s estimator increases more quickly than the

Wiener estimator. Motivated by this observation, we pro-

pose to fuse multiple spectral domain uncertainty estimators
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in order to obtain more accurate estimators. The fused uncer-

tainty estimates are propagated to the feature domain using

one or more uncertainty propagators and the resulting feature

domain estimates are further fused in order to obtain a more

accurate propagator. Both fusions are achieved by linear com-

bination.

3.1. Fusion of uncertainty estimators

In the spectral domain, fusion is performed separately in each

frequency bin f . Denoting by E the number of estimators and

by N the number of time frames, it can be expressed as

(σ̂fus
sfn

)2 =
E∑

e=1

we
sf

(σ̂e
sfn

)2 (7)

where (σ̂e
sfn

)2 is one of the original estimators in (2), (3), (4),

we
sf

are fusion coefficients, and (σ̂fus
sfn

)2 is the fused estimator.

The fusion coefficients are constrained to be nonnegative so

that the fused estimator is always nonnegative. Stacking the

original uncertainty estimates into a E × N matrix Σ̂sf and

the fused estimates into a 1×N vector Σ̂fus
sf

for each frequency

f , (7) can be written in matrix form as: Σ̂
fus
sf

= wsf Σ̂sf ,
where wsf is the 1 × E vector of fusion coefficients. These

coefficients are optimized on development data for which the

true speech signal is known by solving the optimization prob-

lem

wsf = arg min
wsf

≥0

D
(
Σsf |wsf Σ̂sf

)
(8)

where D is a divergence measure [19] such as the Itakura-

Saito (IS) divergence, the Kullback-Leibler (KL) divergence,

or the squared Euclidean distance, and Σsf is the 1×N vec-

tor of oracle uncertainty estimates computed by [9]: σ2

sfn
=

|µ̂sfn
− sfn|2, where sfn is the true speech signal. Note that,

in that case, N represents all time frames of all development

samples.

3.2. Fusion of uncertainty propagators

Several fused uncertainty estimators corresponding to differ-

ent choices of divergence are retained. The resulting spec-

tral domain uncertainty estimates Σ̂fus
sf

are then propagated to

the feature domain using one or more propagators such as

VTS, MM, or UT, yielding P feature domain uncertainty es-

timates (σ̂p
cin

)2 indexed by p. Assuming that the correspond-

ing means µ̂p
cin

are identical for all p (for instance, when us-

ing VTS only), these uncertainty estimates are in turn stacked

into a P ×N matrix Σ̂ci for each feature index i and a fused

uncertainty propagator is obtained as: Σ̂fus
ci

= wciΣ̂ci , where

Σ̂
fus
ci

is the 1×N vector of fused estimates and wci is the 1×P
vector of fusion coefficients. This equation still holds when

the corresponding means differ, except that one mean µ̂ref
cin

is

chosen as a reference and the entries of Σ̂ci are corrected for

the squared bias as (σ̂p
cin

)2 + (µ̂p
cin

− µ̂ref
cin

)2. In either case,

the fusion coefficients are optimized as

wci = arg min
wci

≥0

D
(
Σci |wciΣ̂ci

)
(9)

where Σci is the 1 × N vector of oracle feature domain un-

certainties computed from the true features cin as [7]: σ2

cin
=

(µ̂cin − cin)
2,

3.3. Additive bias compensation

In order to compensate for a possible additive bias in the orig-

inal uncertainty estimates, we do not only scale them by the

fusion coefficients but we also add a nonnegative frequency-

or feature-dependent bias. This is simply achieved by adding

a row to the matrices Σ̂sf and Σ̂ci whose elements are equal

to 1. The optimal bias is then found as the corresponding co-

efficient of wsf or wci .

3.4. Estimation of the fusion coefficients

The optimization problems (8) and (9) are instances of non-

negative matrix factorization (NMF) [20]. The IS divergence,

the KL divergence, and the squared Euclidean distance be-

long to the more general family of β-divergences with β = 0,

1, or 2, respectively [19]. The fusion coefficients are found by

applying the following iterative multiplicative updates [19]:

wsf ← wsf ⊙

(
(wsf Σ̂sf )

β−2 ⊙Σsf

)
(Σ̂sf )

T

(wsf Σ̂sf )
β−1(Σ̂sf )

T
(10)

wci ← wci ⊙

(
(wciΣ̂ci)

β−2 ⊙Σci

)
(Σ̂ci)

T

(wciΣ̂ci)
β−1(Σ̂ci)

T
(11)

where ⊙ denotes element-wise multiplication and powers are

computed element-wise. The fusion coefficients estimated on

the development data are then applied to the test data.

4. EXPERIMENTS

We assess the proposed fusion framework on Track 1 of the

2nd CHiME Challenge [15]. The target utterances are 6-word

sequences of the form <command><color><preposition>
<letter> <digit> <adverb>. The utterances are read by 34

speakers and mixed with real domestic background noise at 6

different signal-to-noise ratios (SNRs). Intending to increase

difficulty, the task is to report the letter and digit tokens and

performance is measured as the percentage of tokens recog-

nized correctly. The training set contains 500 noiseless re-

verberated utterances corresponding to 0.14 hour per speaker.

The development set and the test set each contain 600 utter-

ances corresponding to 0.16 hour per SNR.
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Uncertainty Test set Development set

estimation propagation -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

none none 73.75 78.42 84.33 89.50 91.83 92.25 85.01 73.25 78.02 84.33 89.25 91.75 92.18 84.80

Kolossa 75.25 79.83 85.42 89.92 92.25 93.88 86.08 74.58 79.54 85.12 89.73 92.15 93.56 85.78

Wiener VTS 76.50 79.08 85.83 89.92 92.00 93.75 86.18 76.13 78.68 85.56 89.68 91.75 93.50 85.88

Nesta 77.58 80.00 85.33 89.33 92.33 94.08 86.44 77.00 79.52 85.17 89.33 92.15 93.78 86.16

KL fusion VTS 78.33 80.17 85.92 90.08 92.08 94.17 86.79 78.01 80.07 85.75 89.96 91.67 93.82 86.55

IS — KL — EUC fusion KL fusion 81.33 81.92 88.17 89.58 92.42 93.08 87.75 79.25 81.67 86.92 90.58 92.25 93.33 87.33

Table 1. Keyword accuracy (in %) before and after fusion. Average accuracies have a 95% confidence interval of ±0.8%

(a) Spectral domain fusion
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Fig. 2. Estimated fusion coefficients (a) wsf and (b) wci us-

ing the KL divergence.

Divergence Estimation (dev set) Propagation (dev set)

IS 85.16 86.49

KL 86.55 87.33

EUC 86.18 86.72

Table 2. Keyword accuracy (in %) for several divergences.

4.1. Experimental setup

Speech enhancement is applied to the development and test

datasets using the Flexible Audio Source Separation Toolbox

(FASST) [21] with the same settings optimized on the devel-

opment set as [18]. Speaker-dependent acoustic models are

trained from the training set using the HTK baseline provided

by the challenge organizers [15]. Decoding is performed us-

ing the HTK baseline with Astudillo’s uncertainty decoding

patch2. This patch dynamically adapts the Gaussian mixture

model (GMM) observation probabilities according to Deng’s

rule [7] so as to account for the estimated feature domain un-

certainty.

4.2. Experimental results

Preliminary experiments showed that VTS-based uncertainty

propagation outperforms MM and UT for all uncertainty esti-

2http://www.astudillo.com/ramon/research/stft-up/

mators. Only the results of VTS are hence reported hereafter.

Table 1 shows the results before and after KL fusion. Simi-

lar trends are observed on the development and the test data.

On average over all SNRs, the baseline test set accuracy with

conventional decoding (no uncertainty) is 85.01%. Nesta’s

uncertainty estimator outperforms the other individual esti-

mators and it achieves 86.44% accuracy, that is 10% relative

error rate reduction with respect to the baseline. Both fusions

are achieved by SNR independent linear combination. By fus-

ing all uncertainty estimators, performance further improves

to 86.79%. Fig. 2a indicates that the optimal estimator is a

scaled version of Nesta’s at higher frequencies and a mixture

of Wiener and Nesta’s at lower frequencies. Finally, fusing

the IS-fused estimator, the KL-fused estimator and the EUC-

fused estimator in the feature domain yields 87.75% accuracy,

that is 18% relative error rate reduction compared to the base-

line. This figure is the third best achieved on the CHiME data

and it is the best one achieved using the ASR baseline without

modification of the features or the speaker adaptation tech-

nique [15]. Fig. 2b indicates that mostly a scaled version of

the KL-fused estimator is retained and that it is compensated

for an additive bias on the static features. Table 2 completes

these results by showing that the KL divergence performs bet-

ter than the other two divergences for both fusion stages.

5. CONCLUSION

We proposed a fusion framework to improve the accuracy of

uncertainty estimates in the context of uncertainty decoding.

Experiments on the 2nd CHiME Challenge data showed that

minimizing the KL divergence between the fused uncertain-

ties and the oracle uncertainties results in a significantly re-

duction of error rate by 18% relative to conventional decod-

ing, compared to 10% only for the best single uncertainty es-

timator and propagator . In the future, we aim to generalize

the proposed linear framework into a nonlinear fusion frame-

work and with larger set of divergences.
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