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ABSTRACT

This paper explores a simple yet effective way to gener-
ate temporally coherent disparity maps from binocular video
sequences based on kinematic constraints. Given the dispar-
ity map at a certain frame, the proposed approach computes
the set of possible disparity values for each pixel in the sub-
sequent frame, assuming a maximum displacement constraint
(in world coordinates) allowed for each object. These dis-
parity sets are then used to guide the stereo matching proce-
dure in the subsequent frame, generating a temporally coher-
ent disparity map. Experimental results indicate that the pro-
posed approach produces temporally coherent disparity maps
comparable to or better than competitive methods.

Index Terms— stereo matching, disparity search range,
temporal coherence, view interpolation

1. INTRODUCTION

Estimating the depth of a 3D scene is an active topic in image
processing, with several applications such as object tracking,
scene recognition and view interpolation. There are several
methods for stereo matching, which can be subdivided into
local or global approaches [1]: local methods are typically
based on an initial cost function for each pixel and dispar-
ity, followed by an aggregation step within a neighborhood of
each pixel, and the Winner-Takes-All (WTA) procedure is ap-
plied to select the disparity with the lowest cost; global meth-
ods, on the other hand, usually solve a global optimization
problem that takes into account both evidence from the stereo
pair (e.g. a cost function) and a smoothness constraint for the
disparity map.

When video stereo sequences are used, a frame-by-frame
analysis is usually not appropriate, since temporal artifacts
in the disparity maps may be generated. Alternatively, tem-
poral consistency can be used to improve the estimate of
the disparity map. The work of Leung and colleagues [2]
enforces temporal consistency by minimizing the difference
between the disparity maps of adjacent frames, which may
lead to problems when large motion is present. Davis et
al. [3] presented an approach that extended the traditional
neighborhood-based stereo matching to include multiple

frames across time. However, their approach was focused
mostly on active methods (e.g. high-frequency structured
light), since the temporal window should not contain strong
motion. Richardt and colleagues [4] explored temporal dual-
cross-bilateral (TDCB) grids for cost aggregation, along with
a fast GPU implementation.

Khoshabeh and collaborators [5] presented a two-stage
algorithm for disparity estimation in video sequences. Ini-
tially, a frame-by-frame approach is adopted, and then a 3D
optimization procedure including temporal information is ap-
plied. Their method indeed improves temporal coherence, but
the quality of the generated disparity video sequence is highly
dependent on the choice of the spatial and temporal penal-
ties used in the optimization stage. Pham [6] presented an
approach for spatio-temporal stereo matching based on the
information permeability method. The main idea of their ap-
proach is to first aggregate the disparity costs in space and
then in time (using a few adjacent frames), using color sim-
ilarity as weights in the aggregation step. Despite the good
results shown by the authors, the spatial windows related to
moving pixels may not present much overlap in time, com-
promising the temporal coherence.

There are also approaches that estimate the disparity flow,
which contains the spatial displacement of each pixel as well
as the corresponding disparity variation, and thus encode
information about 3D motion. Gong [7] estimates the dis-
parity flow in an interactive manner, by initially predicting
the displacement at a future frame with the current disparity
flow, and then computing its disparity map using the pre-
dicted value. The computational cost of this approach is
high, but the author explored GPU implementations to im-
prove the performance. Wedel and colleagues [8] proposed
a variational framework for the estimation of stereoscopic
scene flow. They take into account image pairs from two
consecutive frames and compute both depth and a 3D motion
vector, but decoupling the depth estimation from the motion
estimation. Hung et al. [9] also presented a variational ap-
proach to jointly estimate depth and flow in stereo binocular
sequences, dealing in particular with depth/motion outliers.
As in traditional stereo matching for still images, variational
methods (such as [8, 9]) tend to present very good result, at
the cost of high computational complexity. For the sake of
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illustration, an average of 1 minute is needed to process a
single 640 × 480 frame using 24 cores of a 2.67 GHz Intel
Xeon processor, as reported in [9].

In this work we present a new framework to include tem-
poral coherence into stereo matching algorithms by explor-
ing the expected 3D motion of the scene. The proposed ap-
proach explores the projection of 3D objects with a maximum
(known) displacement in world coordinates to define a candi-
date region for each pixel in the image, and also a list of pos-
sible disparity values for each pixel. We also present an ap-
proach to integrate these sets of temporally coherent disparity
values with existing stereo matching algorithms [10, 11] and
generate interpolated video sequences. Our experimental re-
sults indicate that the inclusion of temporal coherence signifi-
cantly reduce the number of temporal artifacts in the disparity
video sequence. We also applied the proposed approach to
generate new synthetic video sequences based on view inter-
polation algorithms [12], obtaining a PSNR gain around 1dB
for each frame in comparison to frame-by-frame analysis.

The remainder of this work is organized as follows. Sec-
tion 2 presents details of the proposed algorithm, and exper-
imental results are shown in Section 3. Finally, Section 4
draws the conclusions.

2. TEMPORALLY COHERENT DISPARITY MAP

When shooting a stereo movie continuously, we should expect
coherence in time, space and disparity. In particular, there are
several scenarios for which we can assume a maximum dis-
placement (in world coordinates) in adjacent frames for each
object in the scene. For instance, if a static stereo camera is
used, the characteristics of the moving objects can be used to
define a maximum displacement ∆max between two adjacent
frames. If pedestrians are the moving objects, ∆max should
be a small value, whereas a larger value for ∆max should be
defined if shooting a sports car race.

Given a stereo camera pair C1, C2 with the same focal
length f and baseline b, and given that each 3D point viewed
by the camera presents a maximum displacement in ∆max
world coordinates across adjacent frames, the goal of this pa-
per is to define a set of geometrical relationships that relate
time, space (image plane) and disparity. We also indicate how
these constraints can be explored by existing stereo matching
approaches to generate a temporally coherent disparity map,
focusing on the problem of view interpolation.

In the pinhole camera model, a pointX = (x, y, z) in the
3D scene is projected to the image plane according to

u = f
x

z
, v = f

y

z
, (1)

where p = (u, v) is the corresponding pixel (in image co-
ordinates) and f is the focal length. Also, if the horizontal
disparity of a 3D point viewed by a pair of rectified cameras
with baseline b is d, then the object depth z = f bd .

Let δX = (δx, δy, δz) be the displacement vector of a 3D
point between two frames, with ‖δX‖ ≤ ∆max according to
our maximum displacement hypothesis. In this way, a point
X at frame t will be located at position X + δX at frame
t+ 1, and it will be projected to an image point p+ δp, with
δp = (δu, δv), and

δu =
fδx− uδz
z + δz

, δv =
fδy − vδz
z + δz

(2)

are computed using Equation (1).
The maximum displacement on the image plane will hap-

pen when the corresponding 3D point presents maximum dis-
placement parallel to the image plane, i.e., when δx2 +δy2 =
∆2

max. Hence, it is possible to compute a bound Rmax(p)
for the maximum displacement of p (in image coordinates)
through

Rmax(p) = max ‖δp‖ =
f∆max

z
, (3)

which is obtained by computing ‖δp‖ using Equation (2) with
δz = 0 and δx2 + δy2 = ∆2

max.
Given a pixel p at frame t and the corresponding point

p′ = p+δp at frame t+1, the maximum image displacement
Rmax(p) can be used to define a set of plausible displacement
vectors S(p) = {δp | ‖δp‖ ≤ Rmax(p)}1 to relate p with p′.

Also, each δp ∈ S(p) relates to a set of possible 3D dis-
placement vectors δX such thatX+δX projects to p+δp.
In particular, there is a range δzmin ≤ δz ≤ δzmax of plausi-
ble depth values that relate to a corresponding range dmin ≤
d ≤ dmax of plausible disparity values. The extreme depth
variations δzmin and δzmax occur when the corresponding 3D
points present the maximum allowed displacement. Hence,
given δp ∈ S(p) and solving Equation (2) for δz with the
constraint ‖δX‖ = ∆max will generate solutions for δzmin
and δzmax. Computing these solutions explicitly and project-
ing the 3D points onto the image plane using Equation (1)
provides the disparity range [dmin, dmax]:

dmin =
bf

(z + (
√
g1+g2+g3+g4+g5−H)

J )
(4)

dmax =
bf

(z − (
√
g1+g2+g3+g4+g5+H)

J )
, (5)

where

G = −
√
g1 + g2 + g3 + g4 + g5, Q = (f∆max)2.

g1 = ((−u2 − f2)z2 +Q)δv2, g2 = (2uvz2δu+ 2Qv)δv

g3 = ((−v2 − f2)z2 +Q)δu2, g4 = 2Quδu+Qv2 +Qu2

g5 = Q2, H = zδv2 + vzδv + zδu2 + uzδu

J = δv2 + 2vδv + δu2 + 2uδu+ v2 + u2 + f2.

1In fact, the search region is elliptical, since the 3D sphere that represents
the set of possible 3D displacements projects to an ellipse on the image plane.
However, for the sake of simplicity, we use the superscribing circle.
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In summary, given an image point p = (u, v) and the
corresponding disparity d at frame t, it is possible to find
the depth z of the corresponding 3D point through z = f bd .
Assuming a maximum 3D displacement ∆max, a 2D search
region S(p) can be defined on the image plane, containing
the set of possible displacement vectors δp = (δu, δv) for
point p between frames t and t + 1. Furthermore, for each
δp ∈ S(p), a range of plausible disparity values R(p, δp) =
[dmin, dmax] can be created, where dmin and dmax are given in
Equations (4) and (5). If we scan each pixel p at frame t, we
can build a set of plausible disparity values Ω(p) expected at
frame t + 1. Algorithm 1 describes the steps to compute the
disparity search range.

Algorithm 1 Disparity Search Range Algorithm
initialize Ω(p) = ∅
for all p do compute Rmax(p) and S(p)

for all δp ∈ S(p) do
compute R(p, δp)
Ω(p+ δp) = Ω(p+ δp)

⋃
R(p, δp)

end for
end for

It is important to note that adjacent pixels with distinct
disparities can generate sparse intervals on the disparity
search range. In summary, Ω encodes the sparse disparity
search range of each (u, v) at frame t+ 1.

The dynamic disparity range defined in the previous sec-
tion can be explored in several ways by existing stereo match-
ing techniques. In global methods, for instance, the evidence
(cost) related to valid disparities can have an increased weight
in the global cost function, to prioritize temporally coherent
disparities. In local methods, the dynamic disparity range can
be used in the initial cost computation (to guide the disparity
search space), in the aggregation step (to prioritize the aggre-
gation of neighbors with valid disparities), or in the WTA step
(also prioritizing disparities that lie within temporally coher-
ent values).

In this paper, we present a possible solution for temporally
coherent stereo matching based on an existing local method
for computing the disparity map of still stereo pairs [13, 10].
The key point of [10] is the use of a local adaptive aggrega-
tion window that can be implemented in a computationally
efficient manner using integral images. In [10], the first step
is to compute a cost matrix C(p, d), where p = (u, v) rep-
resents the position of the pixel in the reference image (with-
out loss of generality, we assume that the left image Il is the
reference) and d represents a horizontal disparity hypothesis
between the rectified stereo image pair, given by

C(p, d) =
∑

(m,n)∈Nc(p)

ρ(|Il(u, v)− Ir(m− d, n)|), (6)

where Nc(p) is a neighborhood around p where the costs are
computed, and ρ(·) is a robust matching function given by

ρ(x) = 1 − e−x/λ, so that large errors x are bounded by the
exponential, and λ is a parameter (set to 15 experimentally).

In the second stage, the values of C(p, d) are aggregated
locally by simply computing the sum of costs within an adap-
tive window, defined based on the color similarity of the cen-
tral pixel p and its neighbors. This neighborhood, called
Ng(p), presents a cross-like structure that allows a fast imple-
mentation based on integral images (for more details please
refer to [13, 10]). In this paper, we also explore the same
neighborhood Ng(p), but also include the dynamic disparity
range in the aggregation step. More precisely, aggregation is
performed through

E(p, d) =
∑

q∈Ng(p)

1

Np
ω(q, d)C(q, d), (7)

where Np is the number of pixels in Ng(p), and ω(p, d) is a
weighting function that prioritizes neighbors of p for which
d is a plausible disparity. Regions related to static objects
should have temporal coherence enforced strongly, opposed
to regions related to occlusions/disocclusions (where tempo-
ral discontinuities in the disparity map may arise). In this
work, we use the pixel-wise color (or intensity) difference in
adjacent frame to estimate how static a pixel is, and propose

ω(q, d) =

{
1 if d ∈ Ω(q)

1 + e−γ(|I
t
l (q)−I

t−1
l (q)|) otherwise

, (8)

where |·| denotes theL2 difference of RGB values when color
images are used, or the absolute value if intensity images are
used (please recall that Ω(q) is the set of plausible disparity
values for pixel q). The γ parameter, with γ ∈ [0, 1], controls
the penalty assigned to neighbors that are not coherent with
the range of plausible disparities: a small value leads to the
same of standard aggregation result, whereas a larger value
tends to increase the aggregation cost function when several
neighbors are not within the range of plausible disparities.
Our experiments indicated that γ = 0.1 is a good choice.
Finally, the disparity for each pixel p is based on the WTA
approach, i.e. the disparity value that minimizes E(p, d).

3. EXPERIMENTAL RESULTS

We have tested our method using several natural and synthetic
stereo/multiview sequences, using ∆max = 0.5m in all exam-
ples. In the first set of experiments, five synthetic video se-
quences with ground truth data proposed in [4]2 were used to
evaluate the quality of the estimated disparity maps in a quan-
titative manner, based on the average (in time) percent of bad
pixels [1] with a threshold of 1 pixel. Results of the frame-by-
frame approach (CROSS) inspired by [13, 10], our temporal
coherence (CROSS-TC), HBP-TV [5] and TDCB [4] for the

2Available at http://www.cl.cam.ac.uk/research/
rainbow/projects/dcbgrid/datasets/
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five sequences corrupted with Gaussian noise N (0, 20) are
summarized in Table 1. As can be observed, our approach
presented better results than TDCB in all cases, and in three
of the sequences it was also better than HBP-TV.

Video Sequence
Technique Book Street Tanks Temple Tunnel

CROSS 35.85 19.16 30.93 19.83 29.42
CROSS-TC 29.70 18.68 24.73 15.20 25.57
HBP-TV 26.97 17.69 26.50 18.01 29.50
TDCB 38.95 24.17 29.34 29.89 33.01

Table 1. Quantitative evaluation of disparity maps (average
percent of bad pixels), best results shown in bold. Following
[5], Gaussian noise N (0, 20) was added to all frames.

We have also used two publicly available multiview
datasets, Book Arrival and Door Flowers [14], and our own
multiview sequence called Herodion, to test the proposed
approach. Since ground truth disparity maps are not avail-
able for these sequences, and the average percent of bad
pixels may have different impact on the final 3D reconstruc-
tion [15], we have performed another quantitative evaluation
in an indirect manner by exploring an important applica-
tion of temporal disparity maps: video view interpolation.
For that purpose, we use sequences acquired with three or
more cameras, select a subset of three adjacent cameras, and
compute the disparity maps (LR and RL) with the external
cameras. Then, we use standardized view interpolation algo-
rithm (VSRS 3.5 [12]) to produce a synthetic video sequence
with in-between views, and compare it with the feed from the
actual camera using the PSNR metric.

Fig. 1 shows the PSNR values along all frames of Flow-
ers video sequence without (CROSS) and with (CROSS-TC)
temporal coherence. It is possible to notice a significant
improvement (over 1 dB in average) when including tempo-
ral coherence. Table 2 shows the temporal average, median
and standard deviation of the PSNR values computed for
each video sequence, without and with temporal coherence.
Some examples of estimated disparity maps and synthe-

Video Dataset PSNR - without temporal coherence
Average Median St. Dev.

Book Arrival 33.19 33.32 0.76
Door Flowers 35.73 35.73 0.65
Herodion 21.68 21.34 1.27

Video Dataset PSNR - with temporal coherence
Average Median St. Dev.

Book Arrival 34.42 34.37 0.92
Door Flowers 36.86 36.85 0.76
Herodion 22.64 22.61 1.68

Table 2. Quantitative evaluation of interpolated video se-
quences without (top) and with (bottom) temporal coherence.

sized views for the Door Flowers sequence are shown in
Fig. 2. As can be observed, the temporally coherent dis-
parity map is at the same time smooth and able to retain
fine details. Also, the synthesized views using our method
present less artifacts (please see the right side of the desk
and the posters on the wall). The full video sequences (ref-
erence, disparity maps and interpolated views) can be found
at http://inf.ufrgs.br/˜rschramm/projects/
stereo/temporal/videos/.
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Fig. 1. PSNR measures from Door Flowers sequence (red
with and blue without temporal coherence).

Fig. 2. Disparity maps and interpolated views for the Door
Flowers sequence related to frames 28 and 71 without (top)
and with (bottom) temporal coherence.

4. CONCLUSIONS

In this paper we proposed a geometric approach to generate
temporally coherent disparity maps based on rectified stereo
video sequences. Our method produces a set of plausible dis-
parity values for each pixel of a given frame based on the dis-
parity values of the previous frame, and can be incorporated
into different stereo matching frameworks. We have also pre-
sented an extension of an existing algorithm [13] by including
temporal coherence.

Our experimental results indicate that the inclusion of
temporal coherence indeed improves the quality of the esti-
mated disparity maps, being also as good as or better than
competitive approaches [4, 5]. We have also explored the dis-
parity maps to generate new synthetic views in the context of
view interpolation, and showed that the new views obtained
with temporally coherent disparity maps present higher PSNR
values than the underlying frame-by-frame method. As fu-
ture work, we plan to integrate the proposed algorithm with
other state-of-the-art stereo matching techniques focused on
still stereo pairs. We also intend to implement our method in
GPU, following a trend of stero matching methods [4, 10].
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