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ABSTRACT

In this paper, we investigate the performance of a noise-robust sparse
representations (SR)-based recognizer using the Alpha-Beta (AB)-
divergence to compare the noisy speech segments and exemplars.
The baseline recognizer, which approximates noisy speech segments
as a linear combination of speech and noise exemplars of variable
length, uses the generalized Kullback-Leibler divergence to quantify
the approximation quality. Incorporating a reconstruction error-
based back-end, the recognition performance highly depends on the
congruence of the divergence measure and used speech features.
Having two tuning parameters, namely α and β, the AB-divergence
provides improved robustness against background noise and out-
liers. These parameters can be adjusted for better performance
depending on the distribution of speech and noise exemplars in
the high-dimensional feature space. Moreover, various well-known
distance/divergence measures such as the Euclidean distance, gen-
eralized Kullback-Leibler divergence, Itakura-Saito divergence and
Hellinger distance are special cases of the AB-divergence for dif-
ferent (α, β) values. The goal of this work is to investigate the
optimal divergence for mel-scaled magnitude spectral features by
performing recognition experiments at several SNR levels using
different (α, β) pairs. The results demonstrate the effectiveness of
the AB-divergence compared to the generalized Kullback-Leibler
divergence especially at the lower SNR levels.

Index Terms— exemplar-based speech recognition, sparse rep-
resentations, alpha-beta divergence, noise-robustness

1. INTRODUCTION

The performance of automatic speech recognition systems is hin-
dered by non-stationary noise and reverberation in everyday applica-
tions. A considerable amount of research has been devoted to tackle
the reduced recognition accuracies due to non-stationary noise re-
sulting in a number of approaches which can mainly be classified un-
der robust feature extraction [1], signal and feature enhancement [2],
model compensation [3] and missing data techniques [4–6]. More-
over, several front-end approaches, e.g. linear filtering, feature
and spectrum enhancement and back-end approaches, e.g. hidden
Markov model (HMM) adaptation and acoustic context-dependent
likelihood evaluation, have been proposed to mitigate the adverse
effect of reverberation on the speech recognizers [7]. All of these
techniques are used together with HMM-based speech recognizers
which are known to perform poorly in case of mismatches between
the training and testing conditions.

As a viable alternative to HMM-based recognizers, exemplar-
based (or template-based) speech recognition techniques recently
regained popularity due to the significant increase in the available
computational power and the development of fast template match-
ing and search algorithms [8–10]. Several hybrid recognition sys-

tems combining this approach with statistical models are also pro-
posed [8, 11–13]. Exemplars are labeled speech segments such as
phones or syllables, possibly of different length, that have occurred
in the training data. Exemplars are compared with the input speech
with respect to a distance metric, e.g. Euclidean distance, using dy-
namic time warping (DTW).

An alternative framework in exemplar-based speech recogni-
tion, namely exemplar-based sparse representations (SR), models
the spectrogram of input speech segments as a sparse linear combi-
nation of exemplars of the same length. SR-based techniques have
been successfully used for speech enhancement [14], feature extrac-
tion [15], clean [16] and noise-robust speech recognition [17, 18].
We have recently proposed an SR-based speech recognition system
which uses exemplars of different length organized in separate dic-
tionaries on the basis of their class and length [19]. Compared to a
system using fixed-length exemplars stored in a single dictionary, us-
ing separate dictionaries for each class provides better classification
as input speech segments are approximated as a linear combination
of exemplars belonging to the same class only. We have also shown
that this system performs reasonably well under noisy conditions
in [20].

In SR-based recognition systems, exemplar weights are obtained
by solving a regularized convex optimization problem with a cost
function comprised of a distance/divergence measure to quantify the
approximation quality. The choice of the distance/divergence mea-
sure depends on the distribution of the speech and noise sources
in the high-dimensional feature space. Magnitude spectral features
have been often used in conjunction with the generalized Kullback-
Leibler divergence (KLD) in SR-based noise-robust speech recog-
nition, blind source separation and polyphonic music transcription
tasks [17, 18, 21]. King et al. investigated the optimal parame-
ter of the beta-divergence as a cost function for non-negative ma-
trix factorization-based speech separation and music interpolation
in [22].

In this work, we use the Alpha-Beta (AB)-divergence [23] to
quantify the approximation error. AB-divergence is a family of
divergences with two parameters, namely α and β. For different
values of these parameters, the AB-divergence connects various
well-known distance/divergence measures such as Euclidean dis-
tance, Hellinger distance, Itakura-Saito divergence and generalized
KLD. The higher degree of freedom offered by the AB-divergence
has been shown to enable better robustness against noise and out-
liers [23]. The goal of this work is to investigate to what extent
the use of the AB-divergence can improve SR-based noise-robust
speech recognition.

The rest of the paper is organized as follows. The exemplar-
based sparse representations system using the AB divergence is ex-
plained in Section 2. The evaluation setup and implementation de-
tails are discussed in Section 3. Section 4 presents the recognition
results and comments on the parameters providing the maximum
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recognition accuracy. In Section 5, the conclusions and thoughts
for future work are discussed.

2. SPARSE REPRESENTATION MODEL OF SPEECH
WITH EXEMPLARS OF DIFFERENT LENGTH

2.1. Model for noisy speech

The noise-robust recognizer described in [20] models noisy speech
segments as a sparse linear combination of speech and noise exem-
plars that are stored in multiple dictionaries. Speech exemplars, each
comprised of D (Mel) frequency channels and spanning l frames are
reshaped into a single vector and stored in the columns of a speech
dictionary Sc,l: one for each class c and each length l. Each dic-
tionary is of dimensionality Dl × Nc,l where Nc,l is the number
of available speech exemplars of length l and class c. Similarly, a
single noise dictionary Nl for each length l is formed by reshaping
the noise exemplars. Each speech dictionary is concatenated with
the noise dictionary of the same length to form a single dictionary
Ac,l = [Sc,l Nl] of dimensionality Dl × Mc,l where Mc,l is the
total number of available speech and noise exemplars. For any class
c, a reshaped noisy speech vector yl of length Dl is expressed as a
linear combination of the exemplars:

yl ≈
Mc,lX
m=1

xm
c,la

m
c,l = Ac,lxc,l s.t. xm

c,l ≥ 0 (1)

where xc,l is an Mc,l-dimensional non-negative weight vector. The
combination is hence supposed to model all variability in the signal
due to pronunciation variation, reverberation, noise and so forth.

2.2. Obtaining the exemplar weights

The exemplar weights are obtained by minimizing the cost function,

d(yl,Ac,lxc,l) + Λr(xc,l) s.t. xm
c,l ≥ 0 (2)

where Λ is an Mc,l-dimensional vector. The first term is the diver-
gence between the noisy speech vector and its approximation. The
second term is a regularization term to produce a sparse solution. A
sparse weight vector implies that the noisy speech is approximated
by a few exemplars from the speech and/or noise dictionaries. Λ
contains non-negative values and controls how sparse the resulting
vector x is. Defining Λ as a vector, the amount of sparsity enforced
on different types of exemplars can be adjusted.

Depending on the type of the used speech features, a diver-
gence/distance measure is adopted to compare how well the approx-
imation fits the noisy speech vector. In source separation problems,
the generalized KLD has been found to yield better results when it
is used in conjunction with magnitude spectral features than for in-
stance the Euclidean distance [24]. Recently, several families of di-
vergences have been proposed and their applications as a cost func-
tion for non-negative matrix factorization have been investigated [23,
25]. We compare the baseline setup in [20] with the proposed setup
using the AB-divergence to quantify the approximation quality.

2.2.1. Multiplicative update rule for the baseline setup

The baseline system adopts a regularization term which penalizes
the l1-norm of the weight vector to produce a sparse solution

r(xc,l) =

Mc,lX
m=1

xm
c,l (3)

and uses the generalized Kullback-Leibler divergence for d:

d(y, ŷ) =

KX
k=1

yk log
yk

ŷk
− yk + ŷk. (4)

The regularized convex optimization problem can be solved by ap-
plying non-negative sparse coding (NSC). For NSC, the multiplica-
tive update rule to minimize the cost function (2) is derived in [17]
and is given by

xc,l ← xc,l � (AT
c,l(yl � (Ac,lxc,l))) � (AT

c,l1 + Λ) (5)

with � and � denoting element-wise multiplication and division re-
spectively. 1 is a Dl-dimensional vector with all elements equal to
unity. Applying this update rule iteratively, the weight vector be-
comes sparser and the reconstruction error between the noisy speech
vector and its approximation decreases monotonically.

2.2.2. Multiplicative update rule for the proposed setup

In the proposed setup, we use the AB-divergence for d, which is
equivalent to the generalized KLD for (α = 1, β = 0) [23], to
compare the noisy speech vector and its approximation. The AB-
divergence is given by:

d
(α,β)
AB (y, ŷ) = − 1

αβ

KX
k=1

yα
k ŷβ

k −
α

γ
yγ

k −
β

γ
ŷγ

k

for α, β, γ 6= 0,

(6)

where γ = α+β. The extended forms of the AB-divergence at α =
0, β = 0 or γ = 0 can be found in [23]. In the initial experiments
presented in Section 4, the proposed setup using the AB-divergence
adopts the multiplicative update rule derived in [23] which does not
take the sparsity inducing regularization term into account, i.e. Λ =
0. The multiplicative update rule which minimizes the first term of
cost function (2) for α 6= 0 is given by

xc,l ← xc,l � ((AT
c,lZc,l) � (AT

c,l(Ac,lxc,l)
.[γ−1])).[1/α], (7)

where Zc,l = y
.[α]
l � (Ac,lxc,l)

.[β−1] and .[ ] denotes element-wise
exponentiation. Investigation of the impact of induced sparsity on
the recognition accuracy with the proposed setup remains as future
work.

2.3. Decoding the noisy speech

The first term of Equation (2) expresses the reconstruction error for
class c and a noisy speech segment of length l. Every noisy speech
segment of each available exemplar length is approximated as a lin-
ear combination of exemplars. This is achieved by applying the slid-
ing window approach [17] to the noisy utterance for each available
exemplar length and iteratively applying Equation (5) using the dic-
tionaries containing exemplars of the corresponding length. After a
fixed number of iterations, the reconstruction error is calculated. As
the label of each dictionary is known, decoding is performed by ap-
plying dynamic programming (taking the grammar into account) to
find the class sequence that minimizes the reconstruction error.

3. EXPERIMENTAL SETUP AND IMPLEMENTATION
DETAILS

3.1. Database

The small vocabulary track of the 2nd ‘CHiME’ Challenge [26]
addresses the problem of recognizing commands in a noisy living
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H
H

H
HHβ
α -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.1 0.5 1

5 57.33 65.25 55.83 45.33 38.33 33.67 27.50 24.08 20.67 - - - -
4.5 39.25 57.83 64.83 56.00 47.00 39.25 34.50 28.83 25.17 21.42 - - -
4 21.92 39.92 58.33 65.25 56.83 47.92 40.92 34.42 29.83 26.58 21.33 - -
3.5 - 22.58 40.25 58.33 64.67 56.92 48.17 41.75 34.92 30.33 26.25 22.17 -
3 - - 22.75 40.83 58.92 63.50 56.92 48.92 41.17 36.00 30.75 28.67 22.75
2.5 - - - 23.08 41.17 57.50 62.25 56.92 50.00 42.00 35.42 32.08 28.25
2 - - - - 23.17 41.67 56.92 62.50 56.33 50.00 40.92 36.83 32.33
1.5 - - - - - 23.33 41.00 57.25 61.83 56.50 48.50 42.33 36.08
1 - - - - - - 23.25 40.50 55.50 61.33 54.58 49.25 42.08
0.5 - - - - - - - 22.92 40.08 54.58 60.58 54.25 48.50
0 - - - - - - - - 22.75 39.00 55.83 59.00 53.67
-0.5 - - - - - - - - - 22.42 42.25 53.25 57.50
-1 - - - - - - - - - - 26.00 37.92 52.42
-1.5 - - - - - - - - - - - 21.67 37.83
-2 - - - - - - - - - - - - 20.83

(a) SNR = -6 dB

HH
HHHβ

α -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.1 0.5 1

5 69.75 76.58 69.50 60.17 50.67 43.75 39.00 33.75 30.17 - - - -
4.5 49.25 71.00 77.42 70.58 60.83 51.25 44.92 39.58 34.67 31.50 - - -
4 28.75 50.17 71.58 78.08 71.67 61.50 52.67 44.25 39.33 35.42 30.25 - -
3.5 - 29.33 51.58 71.83 78.00 72.17 62.83 53.33 45.58 40.67 35.25 31.67 -
3 - - 29.75 51.92 72.00 77.33 73.00 63.75 54.08 47.08 40.92 37.92 33.58
2.5 - - - 29.33 52.50 72.42 77.33 72.58 63.25 54.42 46.33 42.42 39.83
2 - - - - 28.75 52.33 72.33 76.33 72.92 63.00 53.33 48.25 44.33
1.5 - - - - - 28.75 52.67 71.25 76.50 72.67 62.42 56.00 49.25
1 - - - - - - 29.25 52.67 70.92 75.50 70.08 63.00 55.25
0.5 - - - - - - - 29.33 52.50 71.17 74.92 70.75 61.83
0 - - - - - - - - 29.92 51.92 72.17 73.58 69.83
-0.5 - - - - - - - - - 29.67 55.58 69.00 73.08
-1 - - - - - - - - - - 33.50 50.42 67.58
-1.5 - - - - - - - - - - - 29.42 49.25
-2 - - - - - - - - - - - - 29.00

(b) SNR = 0 dB

Table 1: Keyword recognition accuracies evaluated for different (α, β) pairs on the development set at SNR level of 0 and -6 dB. Recognition
accuracies obtained using the generalized KLD are marked with gray background. The best result of each column is given in bold.

room. The clean utterances are taken from the GRID corpus [27]
which contains utterances from 34 speakers reading 6-word se-
quences of the form command-color-preposition-letter-digit-adverb.
There are 25 different letters, 10 different digits and 4 different al-
ternatives for each of the other classes. The recognition accuracy of
a system is calculated based on the correctly recognized letter and
digit keywords.

The clean utterances are artificially reverberated using binau-
ral room impulse responses which include speaker head movement
effects. Then they are mixed with binaural recordings of genuine
room noise at SNR levels of 9, 6, 3, 0 ,-3 and -6 dB. The training set
contains 500 utterances per speaker (17,000 utterances in total) with
clean, reverberated and noisy versions. Noisy utterances are pro-
vided both in isolated or embedded form. The embedded recordings
contain 5 seconds of background noise before and after the target ut-
terance. The development and test sets contain 600 utterances from
all speakers at each SNR level (3600 utterances in total for each set)
both in isolated and embedded from. The immediate noise context
of the target utterances are available in the embedded recordings.
The development set also contains 600 noise-free reverberated utter-

ances. All data has a sampling frequency of 16 kHz.

3.2. Exemplar extraction and dictionary creation

The exemplars and noisy speech segments are represented as Mel-
scaled magnitude spectral features extracted with a 26 channel Mel-
scaled filter bank (D = 26). The frame length is 25 ms and the
frame shift is 10 ms. The binaural data is averaged in the spectral
domain to obtain 26-dimensional feature vectors.

The speech exemplars representing half words are extracted
from the reverberated utterances in the training set according to the
state-based segmentations obtained by applying forced alignment
using a conventional HMM-based speech recognizer. Exemplars
belonging to each speaker are organized in separate dictionary sets
for speaker-dependent modeling yielding 34 different dictionary
sets. The minimum and maximum exemplar lengths are 2 and 40
frames respectively. Exemplars longer than 40 frames are omitted to
limit the number of dictionaries. The usage of very short exemplars
is viable due to the existence of a strict grammar. Dictionary sizes
vary with class, but are limited to 200. The silences between the
words are assumed to be negligible, hence, dictionaries representing
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Fig. 1: Keyword recognition accuracies evaluated for the baseline
and proposed setups on the test set at SNR levels from -6 dB to 9 dB

a silence class are not used. Further details can be found in [28].

3.3. Noise dictionaries

The noise dictionaries used in the experiments contain noise exem-
plars which are extracted from the embedded recordings in the train-
ing set and from the neighborhood of each target utterance in both
directions until the frames belonging to other target utterances. Each
dictionary contains 50 noise exemplars extracted from the training
set and 150 noise exemplars from the immediate neighborhood of
the target utterance.

3.4. Implementation details

The recognition system is implemented in MATLAB and we used
GPUs to accelerate the evaluation of Equation (5) and (7). The mul-
tiplicative update rules are iterated 50 times to find the exemplar
weights. Elements of Λ in Equation (5) are tuned for the highest
recognition accuracy on the development data and set to 1.75 and 3
for speech and noise exemplars respectively. The l2-norm of dictio-
nary columns and reshaped noisy speech vectors are normalized to
unity.

4. RESULTS AND DISCUSSION

We have initially performed recognition experiments on the devel-
opment data with various (α, β) pairs seeking for the pair provid-
ing the best recognition accuracy and its underlying relation to the
used speech features. The generalized KLD, which is the divergence
measure of the baseline system, is a special case of the Alpha-Beta
divergence with (α = 1, β = 0). The recognition accuracies are
obtained for various (α, β) pairs in the range of [-5,1] and [-2,5] re-
spectively with steps of 0.5 applying the multiplicative update rule in
Equation (7) and the results are presented in Table 1 for SNR levels
of -6 dB and 0 dB. The results that are lower than the 70% of the
best results at each SNR level are not presented. As the multiplica-
tive update rule in Equation (7) is not defined for α = 0, this value
of α is replaced with α = 0.1. The recognition accuracies obtained
using the generalized KLD are presented in cells marked with gray
background and they are equal to 53.67% and 69.83% at SNR levels
of -6 dB and 0 dB respectively. The best result obtained for each
column is given in bold.

It can be clearly seen from Table 1 that the highest recogni-
tion accuracies are obtained for the (α, β) pairs that are on the line

α + β = 0.5. The best results at SNR levels of -6 dB and 0 dB
are 65.25% and 78.08% obtained for (α = −3.5, β = 4) result-
ing in an absolute improvement of 11.58% and 8.25% respectively.
Firstly, these results imply that the best results are provided when
the large values in the approximation Ac,lxc,l are slightly down-
weighted compared to the smaller values [23]. Moreover, negative
α values provide better results as they suppress the impact of larger
yl,k/Ac,l,kxc,l,k ratios, i.e. ratios between the kth element of noisy
speech vector yl and its approximation Ac,lxc,l, on the total recon-
struction error [23]. This can be interpreted as putting less emphasis
on the spectral peaks that are approximated with a significant error
and downweighting these erroneously approximated spectral peaks
increases the noise-robustness as expected. It is worth mentioning
that the (α, β) values providing the best recognition accuracy cannot
be generalized to other recognition tasks due to their dependence
on the noise and reverberation characteristics. For different tasks, a
search over the (α, β) plane has to be performed for the best perfor-
mance.

After investigating the recognition accuracies over the (α, β)
plane using the development data, we present the recognition re-
sults on the test data using the baseline setup with and without in-
duced sparsity (the latter is equivalent to the AB-divergence with
(α = 1, β = 0)) and the proposed setup using the AB-divergence
with (α = −3.5, β = 4) at SNR levels from -6 dB to 9 dB in Figure
1. The proposed setup performs better than the baseline setup with
induced sparsity providing 4.17% and 2.42% absolute improvement
at SNR levels of -6 dB and -3 dB respectively. From these results, it
can be concluded that AB-divergence provides large improvements
at lower SNR levels, once the (α, β) pair that couples well with used
speech features is obtained.

5. CONCLUSIONS

This paper analyzes the AB-divergence as a metric to compare
the exemplars and noisy speech segments represented in magnitude
spectral features in the exemplar-based sparse representations frame-
work. Having two tuning parameters, α and β, AB-divergence pro-
vides higher flexibility compared to the commonly used Kullback-
Leibler divergence. AB-divergence links several well-known diver-
gence/distance measures for different (α, β) pairs and, as a result,
the performance analysis of any recognition system using various
divergence/distance measures boils down to a grid search over the
(α, β) plane.

Using the provided multiplicative update rules in [23], we per-
form recognition experiments for different (α, β) pairs to find the pa-
rameters yielding the highest keyword recognition accuracy on the
development data of the 2nd CHIME Challenge. After finding the
optimal parameters, the keyword recognition accuracies obtained on
the test data are compared with the baseline system using the gener-
alized KLD. These recognition experiments have shown that the pro-
posed setup using the AB-divergence with the tuned parameters pro-
vides higher recognition accuracies than the generalized KLD with
induced sparsity at lower SNR levels.

The provided multiplicative update rule for AB-divergence does
not take the sparsity inducing L1 penalty into account. Investigation
of the impact of induced sparsity with the proposed setup remains as
future work.
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