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ABSTRACT

In this paper, an Adaptive Projected Subgradient Method (APSM)

based algorithm for robust subspace tracking is introduced. A prop-

erly chosen cost function is constructed at each time instance and

the goal is to seek for points, which belong to the zero level set

of this function; i.e., the set of points which score a zero loss. In

each iteration, an outlier detection mechanism is employed, in order

to conclude whether the current data vector contains outlier noise

or not. Furthermore, a sparsity–promoting greedy algorithm is em-

ployed for the outlier vector estimation allowing the purification of

the corrupted data from the outlier noise prior further processing. A

theoretical analysis is carried out and experiments within the context

of robust subspace estimation exhibit the enhanced performance of

the proposed scheme compared to a recently developed state of the

art algorithm.

Index Terms— Robust Subspace Tracking, APSM, Greedy Al-

gorithms.

1. INTRODUCTION

A plethora of machine learning and signal processing applications

make decisions exploiting information drawn from large data sets.

The involved data, which are usually high dimensional vectors, can

be generated via the Internet, e–commerce sites, tablets/mobile de-

vices, etc. As the amount of these data increases, the memory stor-

age requirements as well as the computational complexity of the

involved algorithms rise. Henceforth, it is a matter of paramount

importance to develop efficient techniques for processing such large

data sets, the so called big data, [1, 2].

These data, most often, do not lie anywhere in the high dimen-

sional space but they rather “live” in subspaces of much smaller

dimensions. This is a key attribute, which allows the efficient

analysis and processing of such data, provided that their low–

rank subspace has been accurately estimated. This task can be

proved quite challenging, especially when the low–rank subspace

is subjected to changes with time, [3]. In such cases, the em-

ployed subspace estimation algorithm needs to track the subspace

changes online; i.e, to update its current estimates based on the

data which become available sequentially, one per time instance,

as time evolves. Subspace Tracking (ST), e.g., [4, 5, 6, 7], plays

a central role in many applications, such as, tracking of moving

objects [8], foreground/background separation [9], beamforming

[10], just to name a few. Even in cases where the sought subspace is
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not changing with time, the sequential/online processing offers sig-

nificant benefits regarding memory requirements and computational

complexity compared to the batch mode of operation. In the latter,

a) all the available data have to be stored, increasing the memory

requirements and the computational complexity and b) the unknown

subspace have to be re–computed from scratch whenever a new

datum becomes available.

In many ST applications (see for example [9]) the data set in-

cludes outliers, which are usually corrupted data that do not adhere

to the adopted model. For example, when the data are received from

Wireless Sensors, which is the case in localization and tracking ap-

plications, outliers may occur due to malfunctioning nodes. If the

presence of outliers is not taken into consideration, then the per-

formance of the ST algorithms can be degraded, e.g., [9]. Hence,

robustness against outliers is a matter of paramount importance in

subspace tracking.

Related Work: Estimating and tracking the subspace, on which

a sequence of vectors lie, has been extensively studied over the past

decades. A well known algorithm, of relative low complexity, for

tracking the signal subspace, is the so–called Projection Approxi-

mation Subspace Tracking (PAST) proposed in [4]. The Recursive

Least Squares (RLS) technique is employed for the subspace estima-

tion. More recently, the studies in [11, 7, 5] tackle the problem of

ST in a scenario, where missing entries are met in the obtained vec-

tors. It is worth pointing out, that the methodology presented in [11]

is based on gradient descent iterations on the Grassmannian mani-

fold. Finally, the efforts presented in [6, 9] attack the problem of

ST in environments where the measurements are contaminated with

outlier noise.

Contributions: In this paper, a novel algorithm for robust sub-

space tracking is proposed. The presented scheme belongs to the

family of the Adaptive Projected Subgradient Method (APSM) al-

gorithms, e.g., [12, 13, 14]. More specifically, at each time in-

stance, based on the most recently received data, a cost function is

defined. This cost function scores a zero loss for a non–empty set

of points/possible solutions. Our goal consists of finding a point,

which belongs to the intersection of the sets corresponding to all

received data. Furthermore, the proposed algorithm identifies the

time instances at which the data contain outlier noise. In this case, a

sparsity–aware greedy technique, namely the Compressed Sampling

Orthogonal Matching Pursuit (CoSAMP), [15], estimates the sparse

outlier vector, and removes it from the data vector. A theoretical

analysis of the proposed scheme is presented. Finally, numerical ex-

amples verify the enhanced performance of the proposed algorithm

compared to a state of the art algorithm for robust subspace tracking.

Notation: The set of real numbers and the set of non–negative

integers are denoted by R and N respectively. Matrices are denoted
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by uppercase boldface letters and vectors by boldface letters. (·)T

stands for vector/matrix transposition. Moreover, ‖ · ‖ stands for the

Euclidean norm and ‖·‖F for the Frobenius norm. Finally, the m×r
zero matrix and the m×1 zero vector are denoted by Om×r and 0m

respectively.

2. PROBLEM STATEMENT

We consider that at each time step, n, we observe an m × 1 vector,

xn, generated via the model:

xn = U
(n)
∗ wn + vn + on, ∀n ∈ N (1)

where U
(n)
∗ is an m × r orthonormal matrix, wn ∈ R

r, vn ∈ R
m

is the noise process and on is either 0m or corresponds to an outlier,

i.e., on = sn ∈ R
m. Following a similar rationale as in [9, 6],

we assume that the outlier vectors are sparse, that is, ‖sn‖0 � m,

where with ‖·‖0 we denote the �0 pseudo-norm. The columns of the

matrixU
(n)
∗ span an r-dimensional subspace of Rm, say Sn, and our

goal is to estimate Sn. In other words, the algorithm is allowed to

provide as solution any matrix Û
(n)
∗ ∈ R

m×r , whose column space

span the unknown subspace.

2.1. Projection Approximation Subspace Tracking

The Projection Approximation Subspace Tracking (PAST) algo-

rithm, presented in [4], is fundamental for the ST problem, being

the starting point of a number of methods, the one presented here in-

cluded. PAST assumes that on = 0m, ∀n ∈ N, i.e., no outliers are

present and considers minimizing the following scalar cost function,

with respect to an m× r orthonormal matrix U :

J(U) = E‖xn −UU
T
xn‖

2
, (2)

where E stands for the expectation operator. The physical reasoning

of (2) can be summarized as follows. For an orthonormal matrix, it

holds that UUT := PŜ , where PŜ is the projection operator onto

Ŝ, that is the subspace spanned by the columns of U . The cost

in (2) produces a matrix, which minimizes the misfit between the

obtained data and their projection onto the subspace generated by

this matrix. It is obvious that if the vectors xn are noiseless and

if one computes a matrix, Û , for which the loss function becomes

zero, then the columns of Û span the unknown subspace. Indeed,

the minimizers of (2) are strongly connected to the subspace to be

identified; it has been proved in [4] that if the subspace is fixed,

i.e., Sn = S , ∀n, then the global minima of (2) is the only stable

stationary point, which is given by Û = UrQ where Ur consists of

the r dominant eigenvectors of Cxx = E[xnx
T
n ], and Q ∈ R

r×r is

a unitary matrix. It can be readily obtained that the columns of Û

span the subspace S . The cost J(U) is a fourth order function of the

elements of U and it is, therefore, a non–convex function. This does

not contradict with the fact that (2) assumes a global minimum. It

turns out, that all the rest stationary points are not minima, but just

saddle points.

Motivated by the exponentially weighted approach, central in

the Recursive Least Squares (RLS) algorithm, online processing and

tracking abilities are assigned to the PAST algorithm by a slight

modification of the loss function

J
(n)(U) =

n∑
i=1

β
n−i‖xi −UU

T
xi‖

2
, (3)

0 < β ≤ 1 is the so called forgetting factor, used in non–stationary

environments, where the subspace undergoes changes. Moreover, a

further simplification is adopted aiming to convexify (3). In particu-

lar:

J
(n)(U) =

n∑
i=1

β
n−i‖xi −Uyi‖

2
, (4)

where yi = UT
i−1xi, i.e., one of the unknown parameter matrices,

U , is replaced by the respective tentative estimates, UT
i−1.

The cost function given in (4) is the exponential Least Squares

criterion, which has been extensively studied in adaptive filtering,

e.g., [10]. The matrix U
(n)
LS , that minimizes the cost (4) at time in-

stance n, is given by [4]:

U
(n)
LS = Cxy(n)C

−1
yy (n), (5)

where

Cxy(n) = βCxy(n− 1) + xny
T
n , (6)

and

Cyy(n) = βCyy(n− 1) + yny
T
n . (7)

Having access to the quantities (Cxy(n),Cyy(n))n∈N, the clas-

sical PAST algorithm employs the Recursive Least Squares (RLS)

Method for the estimation of U
(n)
LS , by computing efficiently the ma-

trix C−1
yy (n).

2.2. Subspace Tracking via the APSM Algorithm

In this study, a different route is followed. As we have already de-

scribed before, the PAST algorithm computes, at each step, the ma-

trix U
(n)
LS by solving (5). The LS solution, which is sought via the

time averaged covariance matrices (Cxy(n),Cyy(n)), is likely to

deviate from the true solution, i.e., from the true subspace, due to a

number of reasons such as: additive noise, measurement and model

inaccuracies, as well as calibration errors. In order to accommo-

date such deviations, following set theoretic arguments, we seek the

unknown subspace within an “extended” set of possible solutions

which guarantee to include the true one. To be more specific, given

a certain tolerance ε > 0, we define the following cost function

Θn : Rm×r → [0,+∞) :

U 	→ max

{
0,

1

2
‖Cxy(n) −UCyy(n)‖

2
F − ε

}
, (8)

and our goal is to find points, which lie in the level set of this cost

function, defined as: lev≤0Θn := {U ∈ R
m×r : Θn(U) ≤ 0}.

Notice that U
(n)
LS ∈ lev≤0Θn, hence the level–set at each time in-

stance is an “enlarged” set of candidate solutions, since it contains

every matrix, which scores a zero loss, instead of containing a single

point, i.e., U
(n)
LS .

The algorithm, to be presented here, is based on the set theoretic

estimation approach; at each step, a set is constructed, which in our

case is the level–set lev≤0Θn and the goal is to compute a point in

the intersection of these level sets. This can be effectively achieved

via the Adaptive Projected Subgradient Method formula, e.g., [13,

16, 12, 14], given next:

Un+1 =

{
Un − λn

Θn(Un)

‖Θ′

n
(Un)‖2

F

Θ′
n(Un), Θ′

n(Un) �= Om×r

Un, Θ′
n(Un) = Om×r ,

(9)

where Θ′
n stands for any subgradient, which belongs to the subdif-

ferential ∂Θn, defined as [17]:

∂Θn(U) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Om×r ,
1
2
‖Cxy(n)−UCyy(n)‖2F < ε,

γ(UCyy(n)−Cxy)CT
yy(n), γ ∈ [0, 1]

1
2
‖Cxy(n)−UCyy(n)‖2F = ε,

(UCyy(n)−Cxy)CT
yy(n),

1
2
‖Cxy(n)−UCyy(n)‖2F > ε,

(10)
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and λn ∈ (0, 2).
The algorithm above is hereafter referred to as Subspace Track-

ing based on Adaptive Projection Subgradient Method (STAPSM).

3. THE ROBUST SUBSPACE TRACKING APSM

In this section, a robust ST algorithm will be developed, using the

“tools” described in subsection 2.2. The algorithm tackles the pres-

ence of outliers in two phases:

a) An outlier is detected: If the error residual, ‖xn−PUn−1
xn‖,

where PUn−1
is the projection matrix, which projects xn onto the

column space of Un−1, take a large value, then this is a strong indi-

cator that the measurement vector, xn, is corrupted by outlier noise.

Indeed, as the time passes and we obtain an estimate of the sub-

space, which is close to the true one, then ‖xn − PUn−1
xn‖ ≈

‖xn − PS(xn)‖ ≈ ‖vn + on‖. Hence, if the value of the resid-

ual is small (smaller than a specified threshold) then it is likely that

on = 0m, whereas if it takes a relatively large value (larger than

the same threshold) then on = sn. The threshold, through which

we make a decision on whether xn contains outlier noise or not, is

apparently related to the noise variance. Here it is adaptively es-

timated as follows: It is set equal to rn = δr̄n−1, where r̄n−1 is

the average of the q most recent error residuals, q is a user–defined

parameter and δ is a user defined multiplication factor. Apparently,

the larger the δ is the less sensitive the algorithm becomes in the de-

tection of outlier vectors. The threshold is computed via an average

over the q most recent error residuals, instead of the whole history,

so as to “forget” values of the error from the past, which may cor-

respond to previous time instances of the unknown subspace, in a

non–stationary environment.

b) The measurement vector, xn, is cleansed from the outlier

noise, if necessary: If a measurement vector xn is not corrupted by

outlier noise, i.e. the residual is lower than the computed threshold of

the previous phase, then the statistical quantities Cxy(n), Cyy(n)
are updated as suggested in (6), (7) and the new estimate is produced

via (9). On the contrary, if at time instance n, an outlier value is de-

tected, the algorithm estimates its value via the method that will be

described in the sequel, and subtracts it from the measurement vec-

tor.

Note, that in the general case where Un−1 is not orthonormal,

the projection matrix PUn−1
is given by Un−1(U

T
n−1Un−1)

−1UT
n−1.

Therefore,

rn := xn − PUn−1
xn = xn −Un−1(U

T
n−1Un−1)

−1
U

T
n−1xn

= U∗wn + vn + sn

−Un−1(U
T
n−1Un−1)

−1
U

T
n−1(U∗wn + vn + sn)

= (Im −Un−1(U
T
n−1Un−1)

−1
U

T
n−1)sn + ηn, (11)

where ηn := U∗wn+vn−Un−1(U
T
n−1Un−1)

−1UT
n−1(U∗wn+

vn) and Im is the m × m identity matrix. It is not difficult to

see that, if the estimated subspace is close to the true one, then

U∗wn ≈ Un−1(U
T
n−1Un−1)

−1UT
n−1U∗wn ⇔ ηn ≈ vn. Re-

calling that sn is a sparse vector, one can resort to the Compressed

Sensing armoury, e.g., [18, 19], in order to estimate it via the follow-

ing linear system:

rn = Ansn + ηn, (12)

where An := Im − Un−1(U
T
n−1Un−1)

−1UT
n−1. In the current

study, for the estimation of the sparse vector sn, we follow the

greedy philosophy. In a nutshell, greedy techniques identify the sup-

port set, i.e., the positions of the non–zero coefficients of the un-

known vector, and then perform a Least Squares estimate restricted

on this subset. Here, for the estimation of the sparse outlier vector,

the CoSAMP algorithm is employed, [15].

Table 1.

Robust Subspace Tracking Adaptive Projected Subgradient Method

Initialization: An m× r random matrix U0, ε > 0,

window length q, δ > 0.

FOR i = 1 : n DO

1: rn = xn −Un−1(U
T
n−1Un−1)

−1UT
n−1xn

IF ‖rn‖
2 =: rn ≤ δr̄n−1

2: ŝn = 0m

ELSE

3: ŝn = CoSAMP(An, rn)
ENDIF

4: yn = (UT
n−1Un−1)

−1UT
n−1(xn − ŝn)

5: Cxy(n) = βCxy(n− 1) + (xn − ŝn)y
T
n

6: Cyy(n) = βCyy(n− 1) + yny
T
n

7: Un =

{
Un−1 − λn

Θn(Un−1)

‖Θ′

n
(Un−1)‖

2

F

Θ′
n(Un−1), Θ′

n(Un−1) �= Om×r

Un−1, Θ′
n(Un−1) = Om×r

8: q′ = max{0, n− q}, r̄n = 1
n−q′

∑n

j=q′
rj

END

The steps of the algorithm are summarized in Table 1. In Step

1, the residual vector is computed and depending on its norm the

sparse outlier vector is set equal to 0m (Step 2) or it is computed

via the CoSAMP algorithm (Step 3). In Step 4, the vector yn is cal-

culated via the optimization: yn = argminy∈Rr ‖xn − Un−1y‖
2

and Steps 5–6 update the quantities Cxy, Cyy respectively. In Step

7 the new estimate is updated via the APSM formula and, finally,

Step 8 computes the average residual error within the time window

of length q.

Remark 1 The complexity of both STAPSM and Robust STAPSM is

of order O(nr2) springing from the computation of yn. Moreover,

the complexity of the CoSAMP is O(nrT ), [15], where T is the num-

ber of running iterations of the algorithm. However, it should be

pointed out that the CoSAMP is not employed at each time step, but

whenever the algorithm identifies an outlier.

3.1. Theoretical Analysis

In this section, we will present the Theoretical Analysis of the pro-

posed scheme, in the conventional ST scenario, i.e., in the case

where the data adhere to the model (2) and the outliers equal to

0m. The proofs of the theorems and the extension of the theoretical

analysis for the robust case will be presented elsewhere due to space

limitations.
Assumptions 1

1. There exists a sufficiently large time–step, n0, a positive

number ρ1 and any m × r matrix, say Ū for which:

‖Ū −U
(n)
LS ‖F ≤ ρ1, ∀n ≥ n0.

2. We assume that: ‖Cyy(n)‖F ≤ ρ2.

Theorem 1 Consider that assumptions 1.1 and 1.2 hold true. The

proposed algorithm enjoys:

• Monotonicity: The distance of the estimates from Ū is a non–

increasing sequence, i.e.,

‖Un+1 − Ū‖F ≤ ‖Un − Ū‖F ,∀n ≥ n0, (13)

provided that ε ≥ 1
2
ρ21ρ

2
2 and λn ∈ (0, 2).

• Asymptotic Optimality: The time varying cost functions are

asymptotically minimized. Put in mathematical terms:

lim
n→∞

Θn(Un) = 0, (14)

if ε ≥ 1
2
ρ21ρ

2
2 and λn ∈ [ε1, 2− ε1] ⊂ (0, 2).
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• Strong Convergence: The sequence of estimates satisfies:

lim
n→∞

Un = UO , (15)

if ε > 2ρ21ρ
2
2 and λn ∈ [ε1, 2 − ε1] ⊂ (0, 2). Moreover, the

matrix UO satisfies:

UO ∈ lim inf
n→∞

lev≤0Θn, (16)

where lim infn→∞ lev≤0Θn =
⋃∞

n=0

⋂
k≥n

lev≤0Θk and

the overline symbol denotes the closure of a set. In words the

sequence of estimates converges to a point that lies arbitrarily

close to the intersection of the level sets ∀n ≥ n0.

Remark 2 It can be shown that assumptions 1. 1, 1. 2 can be guar-

anteed if the produced estimates are bounded. This assumption is

typical in ST problems, see for example [5, Assumption A.3] where

boundness of the estimates is assumed. Assumption 1.1 yields that

after a number of iterations, the “optimum” matrix U
(n)
LS will not

undergo large deviations, or in mathematical terms the matrices

U
(n)
LS , ∀n ≥ n0 belong to a ball with center Ū and radius ρ1.

4. NUMERICAL EXAMPLES

In this section, we examine the performance of the Robust STAPSM

in a stationary and in a non–stationary scenario. The proposed

scheme is compared to the Grassmannian Robust Adaptive Sub-

space Tracking Algorithm (GRASTA) algorithm, [6], which is

suitable for robust subspace tracking. This algorithm has the same

order of complexity to the proposed one. The adopted performance

metric is the angle between the true subspace and the estimated one

in logarithmic scale.

The Stationary Scenario: In the first experiment we adopt the

model described in (1), with m = 100 and r = 10. We assume that

U
(n)
∗ = U∗, ∀n ∈ N, where the columns of the m × r matrix U∗

are realizations of an i.i.d. N (0m, Im), which are orthornomalized.

The coefficients of the vector wn and the noise vn are drawn from

the Gaussian distribution with zero mean and variance equal to 1 and

10−3 respectively. Finally, we assume that 10% of the data contain

outlier noise. For the sparse outlier vector we have that ‖sn‖0 = 5
and its coefficients follow the Gaussian distribution with zero mean

and variance equal to 4. The positions of the non–zero coefficients

of sn and the time steps, on which the outliers occur, are selected

randomly

For the proposed algorithm, we set ε = 2× 10−3, β =
0.999, q = 20, δ = 3 and λn = 1. Regarding the parameters

ε, q, δ we observed that different choices of them do not affect

significantly the performance of the proposed scheme. These spe-

cific values were chosen, because they led to fast convergence speed

and a low error floor after the convergence. Usually, the forgetting

factor β in stationary environments is set 1, since there is no need

to forget past values, which is the case when β < 1. Nevertheless,

here we chose a slightly smaller β due to the presence of outliers,

since possible errors between the true sparse outlier vector and the

estimated one, which are carried from past values, may lead to per-

formance degradation. Regarding the step–size λn, we obtained,

through extensive experimentation, that the larger the λn the faster

the convergence, at the expense of a higher error floor. Choosing

λn = 1 leads to a good trade–off between convergence speed and

steady–state error floor. Finally, it is assumed that we have an

estimate of the number of non–zero coefficients of the vector sn,

employed in the CoSAMP algorithm.
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Fig. 2. Angle between the subspaces: the non–stationary case

The code of the GRASTA algorithm has been downloaded

from http://nuit-blanche.blogspot.gr/2012/01/grasta-grassmannian-

robust-adaptive.html. The number of subgradient iterations in the

GRASTA, employed in order to estimate the sparse unknown vector

is chosen equal to 60, and the rest of the parameters were chosen as

suggested in [6].

Figure 1 illustrates that the proposed algorithm outperforms the

GRASTA algorithm, since it converges faster to a lower error floor

than the latter algorithm.

The Non–Stationary Scenario: In this experiment, we examine

the tracking ability of the proposed scheme. More specifically, the

parameters are the same as in the previous experiment, but here at

time step 1500 an abrupt change takes place in the matrix U
(n)
∗ and

consequently to the involved subspace.

As we have already mentioned, the parameters are the same as

with the exception of the forgetting factor β, which is set 0.9. Fig. 2

illustrates that the proposed algorithm enjoys a tracking ability, since

it converges fast to a low error floor, after the sudden change.

5. CONCLUSIONS AND FUTURE WORK

A novel algorithm, for robust subspace tracking is introduced. The
algorithm is based on the Adaptive Projected Subgradient Method. A
properly constructed time–varying cost function is employed at each
time step; the goal is to find for a point that lies within the intersec-
tion of the level–sets of the previously mentioned cost functions. A
theoretical analysis takes place in the conventional subspace track-
ing scenario, i.e., when the outliers are absent. Finally, the enhanced
performance of the proposed scheme against a state of the art robust
subspace tracking algorithm is validated through numerical experi-
ments. Future research focuses on generalizing the proposed scheme
in scenarios where the data vectors are partially observed and de-
riving the theoretical analysis in the case where the outlier noise is
present.
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