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ABSTRACT

Effective utilization of sparsity of the system to be estimated is

a key to achieve excellent adaptive filtering performances. This

can be realized by the adaptive proximal forward-backward split-

ting (APFBS) with carefully chosen parameters. In this paper, we

propose a systematic parameter tuning based on a minimization

principle of an unbiased MSE estimate. Thanks to the piecewise

quadratic structure of the proposed MSE estimate, we can obtain

its minimizer with low computational load. A numerical example

demonstrates the efficacy of the proposed parameter tuning by its

excellent performance over a broader range of SNR than a heuristic

parameter tuning of the APFBS.

Index Terms— Shrinkage parameter tuning, sparsity-aware

adaptive filtering, Mallow’s Cp statistic, Stein’s lemma, proximity

operator

1. INTRODUCTION

In adaptive filtering, exploiting sparsity of the system to be estimated

is a key technique to achieve excellent performance [1, 2]; the spar-

sity implies that many coefficients of the system are zero. Such a

property has been observed and exploited in many applications in-

cluding network/acoustic echo cancellation and active noise control

(e.g. see [1–17] and references therein).

Many sparsity-aware adaptive filtering algorithms are derived by

introducing a sparsity promoting term in their implicit/explicit cost

function. One of these is the adaptive proximal forward-backward

splitting (APFBS) scheme [8, 9], which is a principle to adaptively

suppress the sum of a smooth convex function and a nonsmooth con-

vex function. A typical choice of the nonsmooth convex term to pro-

mote the sparsity is a weighted ℓ1 norm with a regularization param-

eter (which we refer to as shrinkage parameter in this paper). In this

technique, careful adaptive tuning of the weight and the shrinkage

parameter is required to achieve excellent performance. For a fixed

parameter, several weight designs have been proposed and examined

their improved performance and robustness against environmental

changes (e.g. [14]).

In this paper, we propose a systematic parameter tuning based

on a minimization principle of an unbiased estimate of the Mean

Squared Error (MSE): our idea is an extension of the spirit of the

This work was supported in part by JSPS Grants-in-Aid (24800022,
24760292, B-21300091).
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Fig. 1. Adaptive filtering scheme.

Mallow’s Cp-type cost [18]1 to the case of adaptive filtering sce-

nario. Since the MSE is an inherent criterion in adaptive filtering,

the shrinkage parameter minimizing the MSE is a natural choice, but

the exact information of the MSE cannot be available in practice. To

alleviate this difficulty, we derive an unbiased MSE estimate, which

can be computed without the complete knowledge of the MSE with

the help of the well-known Stein’s lemma [19].2 Thanks to the piece-

wise quadratic structure of the unbiased MSE estimate, we obtain a

closed form expression of a minimizer, which results in an efficient

computation for tuning the parameter. A numerical example demon-

strates its efficacy from excellent performance over a broader range

of SNR than a heuristic parameter tuning of the APFBS.

2. PRELIMINARIES

2.1. Adaptive filtering problem

Let R and N denote the sets of all real numbers and nonnegative

integers, respectively. Denote the set N\{0} by N
∗ and transposition

of a matrix or a vector by (·)t.
Suppose that we observe an output sequence (dk)k∈N ⊂ R (i.e.,

dk ∈ R,∀k ∈ N) that obeys the following model (see Fig. 1):

dk = u
t
kh∗ + vk, (1)

where k ∈ N denotes the time index, uk := [uk, uk−1, . . . ,
uk−N+1]

t ∈ R
N a known vector defined with the input sequence

(uk)k∈N ⊂ R (where N ∈ N
∗ is the tap length), h∗ ∈ R

N the

unknown system to be estimated (e.g., echo impulse response), and

1In the context of linear regression, [18] introduced an unbiased estimate
of MSE as a criterion for parameter tuning.

2The Stein’s lemma has been utilized in several signal processing prob-
lems, e.g., [20–22]. Recently, in the context of ill-conditioned linear regres-
sion models, it was utilized for the rank selection of an innovative extension
of a reduced rank estimator [23].
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vk ∈ R the noise process. In this paper, we suppose that h∗ is

sparse.

The major goal of adaptive system identification is to ap-

proximate the unknown system h∗ by the adaptive filter hk :=

[h
(1)
k , h

(2)
k , . . . , h

(N)
k ]t ∈ R

N with (ui, di)
k
i=0 together with a

priori knowledge, e.g., the sparsity, on h∗.

2.2. Adaptive proximal forward-backward splitting

Define a time-varying cost function3 Θk ∈ Γ0(R
N) for k ∈ N by

Θk(h) := ϕk(h) + ψk(h), (2)

where ψk ∈ Γ0(R
N ) and ϕk : R

N → R is a smooth convex func-

tion with its gradient ∇ϕk Lipschitz continuous; i.e., there exists a

some Lk > 0 (which is called a Lipschitz constant) such that

‖∇ϕk(h)−∇ϕk(g)‖≤Lk‖h− g‖ (3)

for all h, g ∈ R
N , where || · || stands for the standard Euclidean

norm. Typically, ϕk plays the role of a data fidelity term and ψk
plays the role of a penalty term that exploits the sparsity of h∗ in the

learning process (e.g. weighted ℓ1 norms are adopted as ψk).

To suppress the time-varying function Θk in an online fash-

ion, the Adaptive Proximal Forward-Backward Splitting (APFBS)

method [8, 9] has been proposed.

Algorithm 1 (APFBS) For an arbitrarily chosen h0 ∈ R
N , gener-

ate a sequence (hk)k∈N ⊂ R
N by

hk+1 := prox µk
Lk

ψk

(

hk −
µk
Lk

∇ϕk(hk)
)

, (4)

where µk ∈ (0, 2) is the step-size and prox µk
Lk

ψk
: R

N → R
N

defined by

prox µk
Lk

ψk
(h) := argmin

g∈RN

(

ψk(g) +
Lk
2µk

||h− g||2
)

is called the proximity operator of ψk of index
µk

Lk
> 0 [25].

Note that Algorithm 1 is a time-varying extension of the proximal

forward-backward splitting method [26–29] (see also [30–32]) and

Algorithm 1 satisfies the (strictly) monotone approximation property

[33]:
∥

∥hk+1 − h
∗
Θk

∥

∥ <
∥

∥hk − h
∗
Θk

∥

∥ (5)

for every h∗
Θk

∈ Ωk := argmin
h∈RN

Θk(h) if hk /∈ Ωk 6= ∅. An

acceleration of the APFBS has been proposed in [11].

Here we show a simple sparsity-aware adaptive filtering algo-

rithm in the frame of the APFBS.

Example 1 Define the smooth term ϕk of the objective function Θk
as follows:

ϕk(h) :=
1

2
d2(h, Sk). (6)

Here, Sk := argminh∈RN |dk − utkh| is a closed convex set4, of

which the elements are consistent with the data available at time

3Γ0(RN ) is the class of all lower semicontinuous convex functions from
R
N to (−∞,+∞] that are not identically +∞ [24].

4The distance between an arbitrary point x ∈ R
N and a closed convex

set C ⊂ RN is defined by d(x, C) := miny∈C ‖x− y‖.

k. In this case, the Lipschitz constant of the gradient of ϕk is one.

Moreover, in order to exploit the sparsity of the unknown system,

we adopt a weighted ℓ1-norm as the nonsmooth term, i.e., ψk =
λk‖ · ‖ωk

1 with

‖h‖ωk
1 :=

N
∑

j=1

ω
(j)
k |hj |, h := [h1, h2, · · · , hN ]t∈ R

N ,

where λk > 0 is the regularization parameter, and ω
(j)
k > 0, j ∈

{1, 2, . . . , N}, the weights of the ℓ1 norm defined with available

knowledge. Then the update equation becomes the following:

hk+1 := prox
µkλk‖·‖

ωk
1

(

hk + µk
dk − utkhk

‖uk‖2
uk

)

, (7)

where (µk)k∈N ⊂ (0, 2) is the step-size,

prox
µkλk‖·‖

ωk
1

(h) =
N
∑

j=1

sgn
(

hj
)

max
{

|hj | − µkλkω
(j)
k , 0

}

ei,

sgn(·) is the signum function defined by

sgn(x) :=

{

x/|x| if x 6= 0,

0 otherwise,
∀x ∈ R

and {ej}Nj=1 is the standard orthonormal basis of RN (i.e., ej :=
[0, . . . , 0, 1, 0, . . . , 0]t, j ∈ {1, 2, . . . , N}, with the value 1 as-

signed to the j-th position).

3. PROPOSED METHOD

We propose a systematic tuning of the shrinkage parameter λk in (7):

select a candidate of the adaptive filter at time k+1 parametrized by

λ ∈ R+ := {r ≥ 0}, i.e.,

ĥk+1(λ) = prox
λ‖·‖

ωk
1

(

hk + µk
dk − utkhk

‖uk‖2
uk

)

,

by minimizing the unbiased estimate J(λ) (in Prop. 1 below) of

E
[

(utkĥk+1(λ)− u
t
kh∗)

2
]

(8)

which is the MSE of the system output.

Proposition 1 Assume that the additive noise is according to zero

mean Gaussian noise

p(vk) =
1√
2πσ2

exp

(

− v2k
2σ2

)

.

Define5 J : R+ → R,

J(λ) := (utkĥk+1(λ)− dk)
2 + 2σ2 tr[Ak(λ)uku

t
k]

‖uk‖2
− σ2

5For a given square matrix A, tr[A] indicates its trace. For a vector
x ∈ R

N , diag(x) ∈ R
N×N denotes the diagonal matrix whose diagonal

entries are given by x.
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with a diagonal matrix Ak(λ) whose diagonal entries indicate the

support of the adaptive filter ĥk+1(λ), i.e.,

Ak(λ) := diag(a
(1)
k (λ), a

(2)
k (λ), . . . , a

(N)
k (λ)) ∈ R

N×N ,

a
(j)
k (λ) :=

{

1
∣

∣

∣
g
(j)
k

∣

∣

∣
> λω

(j)
k

0 otherwise,

gk := (g
(1)
k , g

(2)
k , . . . , g

(N)
k )t := hk + µk

dk − utkhk

‖uk‖2
uk.

Then J satisfies that

E[J(λ)] = E
[

(utkĥk+1(λ)− u
t
kh∗)

2
]

.

Note that the unbiased MSE estimate J can be computed without the

exact knowledge on h∗ and its derivation utilizes the idea of [19].6

We shall show an efficient computation for the minimizer of J .

Thanks to the fact that J is a quadratic function over the range that

Ak(λ) is invariant, we can compute the local minimizer of J in each

invariant range and then, by evaluating the value of J at all local

minima, find the global minimizer. This idea is embodied by the

following proposition (see also the resulting algorithm in Algorithm

2).

Proposition 2 (i) Let (λ̂j)
N
j=0 be a sorted sequence of all entries of

(

0,
|g(1)k |
ω

(1)
k

,
|g(2)k |
ω

(2)
k

, . . . ,
|g(N)
k |
ω

(N)
k

)

(9)

in nondecreasing order.7 The function J is quadratic over [λ̂j , λ̂j+1)
because

Ak(λ) = Ak(λ̂j), ∀λ ∈ [λ̂j , λ̂j+1).

(ii) J is lower semicontinuous and

inf
λ∈R+

J(λ) = min
λ∈{λ̂∗

j
}N
j=0

J(λ),

where 8

λ̂∗
j := P[λ̂j,λ̂j+1]

[

tr[Ak(λ̂j)gku
t
k]− dk

tr[Ak(λ̂j) diag (ωk) sgn (gk)u
t
k]

]

(10)

is a minimizer of Jj : [λ̂j , λ̂j+1] → R,

Jj(λ) := (utkĥk+1(λ)− dk)
2

except that λ̂∗
N := λ̂N .

6A rough sketch of the proof of Proposition 1: In the MSE (8), we can
eliminate h∗ by substituting (1) and then expand the quadratic term as

(MSE)

= E
[

(utkĥk+1(λ)− dk)
2
]

+ 2E
[

vk(u
t
kĥk+1(λ) − dk)

]

+ σ2.

In the second term, by using the fact that utkĥk+1(λ) − dk is piecewise
linear w.r.t. vk , we decompose the expectation into the sum of the integrals
over each line segment. In addition, by applying the Stein’s lemma [19] to
each integral, we complete the proof.

7In this paper, for simplicity, we assume that the vector (9) has no over-
lapping entries. This assumption can be relaxed easily.

8For a, b ∈ R : a < b, the projection onto [a, b] is given as

P[a,b] : R → R, P[a,b](r) =











a if r < a

r if r ∈ [a, b]

b if r > b.

Algorithm 2 Sparsity-aware adaptive filtering algorithm with the

proposed parameter tuning

Require: A nonnegative integer Nmax < N , h0 ∈ R
N , µk > 0.

Repeat the following step:

1. Compute

gk = hk + µk
dk − utkhk

‖uk‖2
uk.

2. Calculate the weight ωk (e.g. (12)).

3. Sort
(

0,
|g(1)k |
ω

(1)
k

,
|g(2)k |
ω

(2)
k

, . . . ,
|g(N)
k |
ω

(N)
k

)

into (λ̂j)
N
j=0 by nondecreasing order.

4. Compute (λ̂∗
j )
Nmax

j=0 by

λ̂∗
j := P[λ̂j ,λ̂j+1]

[

tr[Ak(λ̂j) diag(ξk)]− dk

tr[Ak(λ̂j) diag(ζk)]

]

,

where Ak(λ̂j) = diag(a
(1)
k (λ̂j), . . . , a

(N)
k (λ̂j)),

a
(i)
k (λ̂j) =

{

1
∣

∣

∣g
(i)
k

∣

∣

∣ > λ̂jω
(i)
k

0 otherwise,

and vectors ξk and ζk contain the diagonal entries of

gku
t
k and diag (ωk) sgn (gk)u

t
k, respectively.

5. Find λ∗ ∈ argmin{J(λ) | λ ∈ {λ̂∗
j}Nmax

j=0 }.

6. Update hk+1 = prox
λ∗‖·‖

ωk
1

(gk).

Remark 1: (a) (Numerical Stability) Computation of λ̂∗
j is numer-

ically unstable because the denominator in (10)

tr[Ak(λ̂j) diag (ωk) sgn (gk)u
t
k]

becomes significantly small for a large j and it expands influence

of noise contained in dk. Hence we limit the range of j to ensure

numerical stability, e.g.,

λ∗ ∈ argmin{J(λ) | λ ∈ {λ̂∗
j }Nmax

j=0 } (11)

with a predefined nonnegative integer Nmax(< N).
(b) (Computational Cost) The computational cost of Algorithm 2

is O(N logN) comparisons and O(N) multiplications. In step 3,

the sorting requires O(N logN) comparisons. Step 1 and step 6

are O(N) multiplications. Step 2 depends on the weight design but

typically has O(N). In step 4, the most demanding part is O(N)
multiplications for ξk and ζk . In step 5, the second term of J can

be computed with O(N) multiplications for the diagonal entries of

uku
t
k. The first term of J can be computed with O(N) multiplica-

tions by using the following recursive form of
(

utkĥk+1(λ̂
∗
j )
)N

j=0
:

u
t
kĥk+1(λ̂

∗
N) = 0,

u
t
kĥk+1(λ̂

∗
j ) = u

t
kĥk+1(λ̂

∗
j+1)

− (λ̂j+1 − λ̂∗
j+1) tr[Ak(λ̂

∗
j+1) diag (ζk)]

− (λ̂∗
j − λ̂j+1) tr[Ak(λ̂

∗
j ) diag (ζk)]
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(a) The stepsize is set to µk = 0.1.
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(b) The stepsize is set to µk = 0.5.

Fig. 2. Steady-state performance in system-mismatch averaged over

300 trials. The horizontal and vertical axes indicate the SNR and the

system mismatch, respectively.

for each nonnegative integer j ≤ N−1. Hence step 5 can be handled

by O(N) multiplications.

4. NUMERICAL EXAMPLE

We examine the efficacy of the proposed technique in an example of

adaptive filtering setting. The unknown system h∗ of length N =
100 is generated artificially to be sparse (it has only NA = 30 active

coefficients). The additive noise (vk)k≥0 is drawn from the zero

mean Gaussian noise with unit variance. The input signal (uk)k≥0

is also generated from the zero mean Gaussian noise, and the SNR is

varied in 5dB increments from 0dB to 50dB. We adopt the system-

mismatch

(system-mismatch) = 20 log10

(‖hk − h∗‖
‖h∗‖

)

[dB]

as a performance measure.
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(a) The SNR is set to 5dB.
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(b) The SNR is set to 35dB.

Fig. 3. Learning curve averaged over 300 trials. The stepsize is

chosen as µk = 0.1.

Three adaptive filtering algorithms are examined: The normal-

ized least mean square (NLMS) [34], the APFBS (7) with adaptively

weighted soft-thresholding of fixed parameter (labeled as APFBS-

Fixed) [8], and Algorithm 2 (referred to as Proposed). The step-size

parameter of the algorithms is chosen as µk = 0.1 or 0.5. We adopt

as the weight design [14] of the APFBS

ω
(j)
k :=

1
∣

∣

∣h
(j)
k

∣

∣

∣

1−p

+ ν
, (12)

where ν > 0 is a small positive constant. In this experiment, we

set p = 0 and ν = 10−5 (see [14] for a superior performance of

the choice p = 0 compared with different choices). The parameter

λk = 4.5×10−4 of APFBS-Fixed is chosen to minimize the system

mismatch at 15dB for µk = 0.1. The interest region of λ in (11) of

Algorithm 2 is limited as Nmax = 70, 60, or 50. All the algorithms

are terminated 30000 iterations and the system mismatch is averaged

over the last 10000 iterations.

Figures 2 and 3 depict the resulting system-mismatch behav-

ior. Figure 2 shows that the proposed method achieves excellent

steady-state performance over all the observed SNR for all the se-

lected Nmax, while APFBS-Fixed deteriorates the performance in

high SNR. Moreover, Figure 3 illustrates that the proposed tuning

technique does not affect significantly their convergence speed in

early iterations. These demonstrate the efficacy of the proposed tech-

nique as well as its robustness against selection of Nmax.

5. CONCLUDING REMARKS

We have proposed a parameter tuning for a sparsity-aware variant

of the APFBS by utilizing a minimization of an unbiased MSE es-

timate, which robustly achieves excellent performance against the

SNR environmental change in the sense of the system-mismatch.

Thanks to the piecewise quadratic structure of the unbiased MSE es-

timate, we can efficiently obtain the minimizer of the unbiased MSE

estimate.

Future work includes an extension of the proposed parameter

tuning technique to various adaptive filtering algorithms, e.g., [12,

16,17,35], and an extension of the MSE estimate under various noise

distributions.
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