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ABSTRACT

We provide an analysis of a consensus-type algorithm with

weights dependent only on the received data. Differently

from previous approaches that require a global knowledge

of the network, we consider general weights inferred only

from local data which can be modified by local functions

on each node. We provide convergence conditions of such

algorithms for general weight functions and derive analytical

steady states in some selected cases.

Index Terms— consensus, weights, convergence

1. INTRODUCTION

Typically, in distributed consensus problems [1], the mixing

weights are designed based on parameters that depend on the

network topology, such as node degrees or network size [2].

Contribution and previous work. Although some work

bypassing this requirement exists, e.g., [2–4], we here pro-

vide a novel general method for selecting weights based only

on the (local) received data, without any (global) knowledge

of the network. We prove that distributed algorithms with

such weights converge to a consensus even for a time-variant,

so-called switching topology, i.e., a topology where links may

appear and disappear. We further conjecture (and provide an

example) that under some conditions the weights may adopt

negative values. Note that this conjecture is in agreement with

findings from [5, 6] where negative weights are also allowed.

The algorithm [2,4] follows from our model as a special case.

Furthermore, our contribution includes an algorithm

which converges to a harmonic mean of the initial values

(unlike classical average consensus). Other special cases

are presented by simulation. We conclude that the functions

applied on the received data influence the steady state of

the algorithm. This motivates applications for which, unlike

classical average consensus algorithms [1–3] where the al-

gorithm converges to the average of the initial values, the

average is not required (or undesirable), but an agreement is

sufficient [4, 7, 8].

Notation: The number of nodes (network size) is denoted

by N . The set of neighbors of a node i is denoted as Ni. If

node i is included in its neighborhood (there is a self-loop),

we write N+
i ≡ Ni ∪ {i}. We always assume to have a net-

work described by an undirected graph (bidirectional links).

This work was funded by the Austrian Science Fund (FWF) in Project
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Matrix I is an identity matrix and 1 is a (column) vector

of all ones. A row vector is denoted as x
⊤. R

+
0 (R−

0 ) are

non-negative real numbers (or non-positive, respectively).

2. PROBLEM STATEMENT – GENERAL CASE

We here define a general consensus algorithm with weights

dependent on the received data at a given time (iteration). The

received data may be further modified by some functions. As

we prove, for a broad class of general functions, the algorithm

converges to a consensus. Note that e.g., in [9, 10] nonlinear

functions were applied on the data, nevertheless, the weights

remained fixed (or they were switching between two weight

models) and dependent on the topology of the network.

Theorem 1. Assuming a static network, then for any intial

number xi(0) ∈ R, (i = 1, 2, . . . , N ), the update

xi(k) = wii(k−1)xi(k−1)+
∑

j∈Ni

wij(k−1)xj(k−1), (1)

with weights

wij(k) =
fj(xj(k); k)

fi(xi(k); k) +
∑

j∈Ni
fj(xj(k); k)

, (2)

for any function fi(·; k) : R → R
+
0 (R

−
0 ); with the convention

that if for finite times {k0}, fj(xj(k0); k0) = 0, ∀j ∈ N+
i ,

then wii(k0) = 1; Eq. (1) asymptotically converges to a con-

sensus, i.e.,

lim
k→∞

xi(k) = c, ∀i = 1, 2, . . . , N. (3)

Remark: Notice that if we violate the condition that

fj(xj(k0); k0) = 0, ∀j∈N+
i happens only finite many times

(k0 is from a finite set), then wii(k) = 1 and xi(k) = xi(k0),
∀i; k > k0. In other words, the consensus is reached, in this

case, only if |xi(k0) − c| < ǫ, for all i and some ǫ > 0,

already holds (algorithm has already converged – within the

ǫ limit – when we disconnect some nodes). If this happens

only a finite number of times, the information can still spread

over the network and a global consensus may be achieved.

Note that by a static network in Theorem 1 we imply that

its adjacency matrix A does not vary. However, as noted in

the remark, allowing some weights to become zero at a fi-

nite amount of time is equivalent to a network with switching

topology (links between the nodes may vary).

Still having in mind that the functions at the nodes fi(·)
may change in time k, for the sake of clarity, we drop the addi-

tional argument k in the following notation, i.e., fi(·), where

this property is not explicitly required.
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Proof of Theorem 1. Since all functions fi(·) :R→R
+
0 (R

−
0 )

(i = 1, 2, . . . , N), we conclude that 0 ≤ wij(k) ≤ 1, ∀i, j
and from a global (network) point of view, we observe that

the weight matrix (2), i.e.,

W(k) = [W(k)]ij = wij(k),

has the following properties:

1. W(k)1 = 1 for all k, (W(k) is row-stochastic)

2. eigenvalue λmax(k) = 1, with corresponding right eigen-

vector vmax(k) = 1,

3. left eigenvector corresponding to the eigenvalue λmax(k),
u
⊤
max(k) = (u1(k), . . . , ui(k), . . . , uN (k)) with

ui(k) =

fi(xi(k))
(

fi(xi(k)) +
∑

j∈Ni

fj(xj(k))
)

N
∑

i′=1

fi′(xi′(k))
(

fi′(xi′(k)) +
∑

j′∈Ni′
fj′(xj′(k))

)

.

The choice of the weights (2) thus guarantees the well-known

neccessary conditions for convergence [5, 11] of Eq. (1), i.e.,

limk→∞ x(k) = limK→∞
∏K

k=0 W(k)x(0) may exist.

Furthermore, notice that matrix W(k) can be decom-

posed into

W(k) = D1(k)(I+A)D2(k), (4)

where D1(k) =






1∑
j∈N

+
1

fj(xj(k))
1∑

j∈N
+
2

fj(xj(k)) . . .




,

D2(k) =





f1(x1(k))
f2(x2(k))

. . .



, and A is the adjacency

matrix of the network. Thus, in case matrix A is symmetric

(undirected graph), any matrix of form (4) can be regarded

as a transition matrix of a reversible (homogeneous) Markov

chain [12, 13]. Thus, if W(k) is constant for all k > 0, we

find that limK→∞(W(k))K = W(k) = vmax(k)u
⊤
max(k).

However, in general, we are interested in the convergence

of the time-varying matrices W(k), i.e.,

lim
K→∞

W(K)W(K − 1). . .W(0) = lim
K→∞

K∏

k=0

W(k). (5)

From the theory of Markov chains, we call a sequence of

matrices (strongly) ergodic, if the product of transition matri-

ces W(k) converges to a matrix with identical rows1.

To prove Theorem 1, we follow standard mathematical

proofs and utilize the notion of coefficient of ergodicity µ(W)
as proposed in [16, 17], i.e.,

µ(W) , min
i,i′

‖min(wij , wi′j)‖1 = min
i,i′

∑

j

min(wij , wi′j).

Thus, this coefficient “measures” the similarity between the

rows of a matrix W. Clearly, µ(W) = 1 if and only if all the

rows of a row-stochastic matrix W are identical. To simplify

1Note that unlike non-homogeneous Markov chains where the right prod-

uct of transition matrices is considered, we are interested in the left product

of the matrices. The theorems and tools used in the proof here, however, do

not depend on the order of the matrices [14, 15].

the proof, we introduce yet another coefficient of ergodicity

[16, 17], i.e.,

δ(W) , max
i,i′

‖w⊤
i −w

⊤
i′ ‖∞ = max

j
max
i,i′

|wij − wi′j |,

where w
⊤
i is the i-th row of matrix W. Similarly to µ(W),

δ(W) describes the difference between the rows of a matrix

W. It can be observed that δ(W) = 0 if and only if all the

rows of W are identical.

From [16, Lemma 3], we know that for a product of two

row-stochastic matrices A and B, i.e., C = AB, it holds that

δ(C) ≤ (1− µ(A))δ(B).

By extending this to an infinite product of row-stochastic ma-

trices, we obtain [16, Theorem 2]

δ

(
∞∏

k=0

W(k)

)

≤
∞∏

k=0

(1− µ(W(k))).

For the proof we further require the notion of so-called

scrambling matrices as defined in [16]. A scrambling matrix

is a matrix where for every pair of rows, say (i, i′), there exists

at least one column, say j, such that both wij>0 and wi′j>0.

Alternatively, we can say that no two rows of matrix W

are orthogonal[18]. Note that a scrambling matrix does not im-

ply an irreducible matrix (connected network; see Case 3 a-

head), nor an irreducible matrix imply a scrambling. Also note

that any matrix with a positive column is a scrambling matrix.

It can be observed that for any scrambling matrix W,

0 < µ(W) < 1. And, µ(W) = 0, if and only if W is not

a scrambling matrix. Also, as mentioned before µ(W) = 1
if and only if all the rows of a row-stochastic matrix W are

identical. It thus suffices to show that there are infinitely many

scrambling matrices in the product
∏∞

k=0 W(k).
To prove Theorem 1, for the general case fi(·) ≥ 0 (non-

negative), we have to distinguish the following three cases:

Case 1) If all fi(xi(k)) > 0 (strictly positive) (or all fi(·)
are strictly negative), we observe that matrix W(k) is

a primitive matrix (irreducible since it remains connected;

and aperiodic since at least one self-loop will be

present) [19]. We further observe from decomposition (4)

that any product of W(k)W(k − 1) is again a primitive

matrix2. Thus, for any positive diagonal matrix D̃(k) =

diag( f1(x1(k))∑
j∈N

+
1

fj(xj(k−1)) , . . . ), matrix (I+A)D̃(k)(I+A)

eventually becomes a scrambling matrix (information from

some node spreads to all other nodes after some itera-

tions k1, i.e., there will be a positive column). Such “sub-

products” of scrambling matrices appear in (5) infinitely

many times.

Case 2) If we at some times {k0} disconnect all neighboring

nodes of node i, node i stops receiving data (becomes iso-

2From [20, Lemma 4] we know that if all (long-enough) “sub-products”

of product (5) are primitive matrices, then the product converges to a matrix

with identical rows. Note that the condition, that also the product of matrices

is a primitive matrix, is a crucial condition. In general, even if every matrix

W(k) is primitive, the product of matrices need not to be a primitive matrix

and thus the convergence is not satisfied [16].
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lated), i.e., fj(xj(k0)) = 0, ∀j ∈ N+
i , then wii(k) = 1,

and the value at node i remains constant, i.e., xi(k0 + 1) =
xi(k0). In this case µ(W(k0)) = 0. Thus, clearly, if we

did not have the condition that this case happens only fi-

nite many times, limK→∞ δ
(
∏K

k=0 W(k)
)

could be larger

than 0, and thus a consensus might not be reached.

Case 3) We disconnect at some times {k1} some (at least

one, but not all) of neighboring nodes of node i, i.e.,

fj(xj(k1)) = 0, for some j ∈ N+
i . This means that the

j-th columns of W(k1) will be equal to 0. Matrix W(k1)
nevertheless remains row-stochastic, with a positive off-

diagonal element in every row. Note that in this case the

diagonal element wii(k1) = 0, thus this generalizes the

conditions on convergence as proposed in [4, 21]. Also

note, that this case may happen infinitely many times (∀k).

Case 3 represents the case when some nodes at times {k1} do

not transmit anything, only receive (recall, that they are not

isolated), and thus the network is not (strongly) connected

anymore. Similarly to Case 1, after some (finite) steps (de-

pending on the connectivity of the network) there will be a

strictly positive column in the matrix

W(k1) ,
∏

k∈{k1}
W(k), thus W(k1) will be a scram-

bling matrix. For all (infinitely many) k1, µ(W(k1)) ≤ 1,

and thus

δ

(
∞∏

k=0

W(k)

)

≤
∞∏

k=0

(1− µ(W(k))) =

∏

k∈{k0}

(1− µ(W(k)))
︸ ︷︷ ︸

=1

∏

k∈{k1}

(1− µ(W(k)))
︸ ︷︷ ︸

<1

= 0.

This concludes the proof of Theorem 1.

3. SPECIAL CASES

In this section we provide examples of weights with specific

functions and derive their steady states.

First, let us recall the properties of the weight consensus

matrix as proposed in [1, 22].

Lemma 1. Having a static connected network described by

an adjacency matrix A with a degree matrix

D = diag(d1, d2, . . . , dN ), then weight matrix

W = (I+D)−1(I+A) (6)

has the following properties:

1. W1 = 1,

2. maximum eigenvalue λmax ≡ maxi |λi| = 1, with corre-

sponding right eigenvector vmax = 1,

3. left eigenvector corresponding to λmax,

u
⊤
max = 1∑

N
i=1

1+di
(1 + d1, 1 + d2, . . . , 1 + dN ).

Thus,

lim
k→∞

W
k = vmaxu

⊤
max.

Proof. See [1].

Note that a consensus algorithm with weights (6) does

not, in general, lead to an average consensus algorithm [1],

unless the network has a regular topology, or a combi-

nation of two algorithms is performed3 [4]. Also note,

that in this case, the decomposition (4), takes the form,

D1(k) = diag( 1
1+di

, . . . , ), D2(k) = I, which is the case

of the following theorem.

Theorem 2. Assuming a static connected network, then for

any initial number xi(0) ∈ R (∀i = 1, 2, . . . , N ), the update

algorithm (1) with functions in the weights (cf. Eq. (2))

fi(xi(k)) = 1, i = 1, 2, . . . , N, (7)

asymptotically converges to the consensus

lim
k→∞

xi(k) =

N∑

i=1

1 + di
∑

j (1 + dj)
xi(0). (8)

Note that weights (7) are simply selected only according

to the number of received messages at time k. A deeper anal-

ysis of this algorithm, including its convergence speed, can be

found in [4].

Proof. The convergence of the algorithm to a consensus fol-

lows from Theorem 1. Moreover, from a global point of view,

x(k)= W(k − 1)x(k − 1) = (I+D)−1(I+A)x(k − 1)

=
(
(I+D)−1(I+A)

)k
x(0).

Taking the results of Lemma 1 concludes the proof.

Conjecture 1. Theorem 1 holds also for (appropriate) mixed

positive/negative functions fi(· ; k), as long as the weights at

each node sum to 1 (and having non-zero denominator in (2)),

or for specific topologies, i.e., if fi(· ; k) :R→R. Then the up-

date algorithm (1) with weights (2), converges to a consensus.

Remark: If fi(xi(k)) < 0 for all i ∈ {1, 2, . . . , N} and k,

then 0 < wij < 1, ∀i, j, and the algorithm is equivalent to

case of fi(xi(k)) > 0 for all i, k (see the Case 1 of the proof

of Theorem 1 for strictly positive case). For a more general

case, see Theorem 3 ahead.

To support Conjecture 1, we define the following algo-

rithm, which can take also negative values, but which, never-

theless, converges to a consensus.

Theorem 3. For any number xi(0)∈R\{0} (i = 1, 2, . . . , N ),

the algorithm (1) with functions in the weights (cf. Eq. (2))

fi(xi(k)) =
1

xi(k)
(9)

asymptotically converges to the consensus, i.e.,

lim
k→∞

xi(k) =

∑N

i=1 1 + di
∑N

i=1
1+di

xi(0)

, ∀i = 1, 2, . . . , N. (10)

3Unlike the case considered here, in [4] the network is considered to be

without self-loops, i.e., W̃ = D−1A. Nevertheless, our approach with

weight matrix (6) is equivalent to that of [4], as shown in [1].
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Corollary 1. In case of a regular network (same degree di of

every node),

lim
k→∞

xi(k) =
N

∑N

i=1
1

xi(0)

,

thus, the algorithm from Theorem (3) with weights (9) con-

verges to a steady state equal to the harmonic mean of the

initial values.

Proof of Theorem 3. By plugging the weights (9) into (2),

Eq. (1) yields

xi(k) =
1

1
xi(k−1)+

∑

j′∈Ni

1
xj′ (k−1)

+
∑

j∈Ni

1
1

xi(k−1)+
∑

j′∈Ni

1
xj′ (k−1)

,

which can be rearranged as

1

xi(k − 1)
+
∑

j′∈Ni

1

xj′(k − 1)
=

1 + di
xi(k)

.

From a global (network) point of view, we can write

(I+A)x̂(k − 1) = (I+D)x̂(k),

where x̂(k) = ( 1
x1(k)

, 1
x2(k)

, . . . , 1
xN (k) )

⊤.

Thus, we obtain

x̂(k) = (I+D)−1(I+A)x̂(k − 1),

=
(
(I+D)−1(I+A)

)k
x̂(0)

and using Lemma 1 we find

lim
k→∞

x(k) =

∑N

i=1 1 + di
∑N

i=1
1+di

xi(0)

1.

Corollary 1 follows, if di = d, ∀i.
Due to space constraints we omit here other examples,

which we mention in the simulation section and for which

the steady states (or bounds on the steady states) can be also

derived.

4. SIMULATIONS

We simulate random geometric networks (network with nodes

communicating only with neighbors within some radius) with

number of nodes N = 20.

In Fig. 1 we show an example of Theorem 1 for the

weight functions fi(xi(k)) = xi(k), with initialization

xi(0) = {1, 2, . . . , 20}, thus x̄(0) = 10.5. We simulate

the case when the two nodes are disconnected for iterations

{k0}={3, 4, . . . , 40}∪{45, 46, . . . , 60}, i.e., fj(xj(k0))= 0 ,

∀j ∈ {N+
1 ∪ N+

7 }. We observe that the algorithm still

reaches a consensus as expected from Theorem 1. We com-

pare these weights with so-called Metropolis weights [2]

(dash-dotted lines) whose weights require the knowledge of

the node degrees in the network. We observe that in that case

the convergence is slightly slower (k = 120 vs. k = 100),

and due to the disconnected nodes, the states also do not

converge to the average of the initial values (x̄(k) ≈ 10.7).

In Fig. 2 we simulate seven different weights with follow-

ing functions:f
(1)
i (xi(k))=x2

i (k), f
(2)
i (xi(k))=tan(xi(k)),

f
(3)
i (xi(k)) = xi(k), f

(4)
i (xi(k)) = arctan(xi(k)),

k

x
i
(k
),

i
=

1,
2,
..
.,
20

0
0

2

4

6

8

10

12

14

16

18

20

20 40 60 80 100 120

fi(·)
Metropolis

Fig. 1. Example of Alg. 1 with weights as fi(xi(k))=xi(k)
and two disconnected nodes during a finite number of itera-

tions. Dash-dotted lines are Metropolis weights [2].

 

 

k

A
v
er

ag
e

x
(k
)

x2

tan(x)

arctan(x)√
x

x

1 (Theorem 2)
1/x (Theorem 3)

0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100

Fig. 2. Various weight functions. Averaged over 100 random

initializations and over 20 nodes; xi(0)∈(0, 1).

f
(5)
i (xi(k))=

√

xi(k), f
(6)
i (xi(k))=1, f

(7)
i (xi(k))=

1
xi(k)

.

The simulations have been performed for 100 random initial-

izations xi(0) ∈ (0, 1), i= 1, 2, . . . , N , for a fixed randomly

selected geometric network. The depicted results are the av-

eraged values over the initializations and nodes. We observe

that in all cases the states converge to a consensus and that the

slope in the transition phase (i.e. convergence speed) is (on

average) comparable, independent from the weight function.

5. CONCLUSION

We provided a novel approach for designing weights for dis-

tributed consensus algorithms, without any knowledge about

the network, based only on the received data. We derived

steady states for some specific weight functions. A general-

ized proof for negative weights as proposed by the conjecture

remains an open issue. Also a deeper analysis of convergence

speed and time with respect to the weight function is worth

looking into. The converse problem, i.e., to find appropri-

ate functions for a desired steady state remains a challenging

open question for future research.
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