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ABSTRACT

We consider a binary hypothesis testing problem in a tandem net-

work where the distribution of the agent observations under each

hypothesis comes from an uncertainty class. When agents know

their positions in the tandem, and the contamination of the uncer-

tainty classes are non-zero, we show that asymptotic learning of the

true hypothesis under social learning is not possible even when the

log likelihood ratio of the nominal distributions of the uncertainty

classes is unbounded. Furthermore, asymptotic learning in social

learning is achievable if and only if the uncertainty classes contam-

ination converge to zero. When agents do not know their positions,

the minimax error probability is bounded from zero, and we provide

tight bounds for it.

Index Terms— social learning, decentralized detection, tandem

networks

1. INTRODUCTION

Social networks have grown immensely in popularity over the last

ten years, and have become an easily accessible source of informa-

tion for many people, some of whom rely on such networks to inform

them of global affairs and news updates [1]. A potential application

of social networks is in social learning and sensing, where inference

about a phenomenon of interest is made through the help of agents in

the network [2,3]. For example, when users send a picture of litter in

a park to a social sensing platform [4], the park management can im-

mediately deploy cleaners to the right locations to remove the litter

in order to create a more pleasant environment for park goers. An-

other use might be for agents to report congested road conditions, so

that other agents know to avoid those roads and prevent aggravating

the traffic congestion [5].

A social network propagates information via information ex-

change between agents in the network, with the information poten-

tially modified by each agent before passing on to another agent. A

social network can be modeled as a graph of agents, where some

agents make observations about a phenomenon of interest, and

shares part of their observed information with other agents con-

nected to it. Each agent then fuses its own information (if any) with

information obtained from its neighbors in the network to form its

own opinion. The goal of each agent is to make an inference about

the phenomenon, with the help of the opinions of other agents in

the network. However, information provided by an agent may not

be reliable or an agent may not have sufficient prior knowledge of

the agent from whom it receives a piece of information from to

accurately make inferences using that information [4].

In this paper, we formulate and study the robust social learning

problem in the very simplistic tandem network. A tandem network

consists of agents connected in a serial fashion, where each agent

receives information from a previous agent, makes its own observa-

tion about a phenomenon of interest modeled by a binary hypothesis,

and makes a decision of the hypothesis based on both its observation

and the information from the previous agent. The agent’s decision

is based on a local error criterion, which it selfishly tries to opti-

mize. This behavior is present in social networks, where users are

mainly concerned with spreading only locally accurate information.

In this paper, we call this social learning [6–9], in contrast to the

case where agents’ decision rules are designed to minimize the error

criterion of the last agent in the network, which is known as decen-

tralized detection [10, 11]. The tandem network approximates a sin-

gle information flow in a social network, and has been widely stud-

ied in [12–16]. In [16], the tandem network is studied under social

learning rules, and conditions for the error approaching zero as the

number of agents grows large are derived. The reference [11] shows

that the rate of error decay is at most subexponential. Feedforward

networks, in which an agent obtains information from a subset of

previous agents not necessarily just the immediate predecessor, have

been studied in [6, 9]. In the above papers, it is assumed that each

agent knows the distribution of its private observation, and that of its

predecessor, as well as its location in the network. In this paper, we

investigate what happens when one or both of these assumptions do

not hold.

The robust detection framework was first proposed by [17],

which studies the case of a single agent. The underlying probability

distributions governing the agent observations are assumed to be-

long to different uncertainty classes under different hypotheses, and

it is shown that under a minimax error criterion, the optimal decision

rule for the agent is a likelihood ratio test based on the pair of least

favorable distributions (LFDs). Subsequently, the reference [18] in-

vestigates robust detection in a finite parallel configuration, with and

without a fusion center. In this paper, we consider robust detection

and social learning in a tandem network. Our main contributions are

the following.

1. We obtain the LFDs for tandem networks, and show that

when the uncertainty classes for all agent observations are

the same, and agents know their positions in the tandem,

asymptotic learning under decentralized detection and social

learning is not possible even when the log likelihood ratio of

the nominal distributions is unbounded if the contamination

of both uncertainty classes are non-zero. This is in contrast to

the case where the contamination of the uncertainty classes

are zero [11, 16], in which case asymptotic learning happens

if the log likelihood ratio is unbounded.

2. When agents know their positions in the tandem, we show

that asymptotic learning under social learning is achievable if

and only if the log likelihood ratio of the nominal distribu-

tions is unbounded, and the contamination of the uncertainty

classes converge to zero.
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3. When the agents do not know their positions in the tandem,

asymptotic learning is not possible. We provide lower bounds

for the false alarm and missed detection probabilities, and

show that if the contamination of the uncertainty classes con-

verge to zero, the error probabilities converge to these bounds.

The rest of this paper is organized as follows. In 2, we describe

our model and notation, as well as prove the result in [18] for tan-

dem networks. In 3, we study various asymptotic properties of the

tandem network. We then relax the assumptions that every agent

knows its position in the network and derive bounds for the asymp-

totic minimax error, as well as the conditions necessary to achieve

those bounds. In 4, we provide some numerical results. In 5, we

conclude with some brief comments.

2. PROBLEM FORMULATION

We consider a tandem network consisting of N agents, and a binary

hypothesis testing problem in which the true hypothesis H is Hj

with prior probability πj ∈ (0, 1), for j = 0, 1. Conditioned on

H = Hj , each agent i in the tandem network makes an observa-

tion Yi, defined on a common measurable space (Y,A), and with

distribution P i
j belonging to an uncertainty class

Pi
j =

{

Q | Q = (1− ǫij)Pj + ǫijR,R ∈ R
}

,

where R is the set of all probability measures on (Y,A), Pj ∈ R
is the nominal probability distribution, and ǫij ∈ [0, 1) is a positive

constant that is sufficiently small so that Pi
0 and Pi

1 are disjoint. We

assume that all distributions in Pi
0 and Pi

1 are absolutely continuous

with one another, and the distribution P i
j from which the observation

Yi is drawn from is unknown. The parameter ǫij is also known as

the contamination for the uncertainty class Pi
j . When ǫij = 0, we

recover the classical Bayesian hypothesis testing problem.

For i = 1, . . . , N , each agent i makes a decision Ui =
φi(Yi, Ui−1) about the hypothesis H , where U0 ≡ 0. For j = 0, 1,

let P
(N)
j = P 1

j × P 2
j × ... × PN

j . In the decentralized detec-

tion problem, our aim is to find a set of decision rules φ(N) =
(φ1, φ2, ..., φN ) such that the maximum probability of error

P (N)
e (φ(N)) =π0 sup

P
(N)
0 ∈P

(N)
0

PF (φ
(N), P

(N)
0 )

+ π1 sup
P

(N)
1 ∈P

(N)
1

PM (φ(N), P
(N)
1 ) (1)

is minimized. In (1), PF and PM are the false alarm and missed de-

tection probabilities respectively, and can be determined recursively

as

PF (φ
(i), P

(i)
0 ) =PF (φ

(i−1), P
(i−1)
0 )P i

0(φi(Yi, 1) = 1)

+ (1− PF (φ
(i−1), P

(i−1)
0 ))P i

0(φi(Yi, 0) = 1)

and

PM (φ(i), P
(i)
1 ) =PM (φ(i−1), P

(i−1)
1 )P i

1(φi(Yi, 0) = 0)

+ (1− PM (φ(i−1), P
(i−1)
1 ))P i

1(φi(Yi, 1) = 0),

with PF (φ1, P
1
0 ) = P 1

0 (φ1(Y1) = 1) and PM (φ1, P
1
1 ) =

P 1
1 (φ1(Y1) = 0).

In the social learning problem, given the decision rules of the

previous agents 1, . . . , i−1, each agent i seeks to find φi to minimize

P i
e(φi | φ

(i−1)) =π0 sup
P

(i)
0 ∈P

(i)
0

PF (φ
(i), P

(i)
0 )

+ π1 sup
P

(i)
1 ∈P

(i)
1

PM (φ(i), P
(i)
1 ). (2)

Let pj be the density (with respect to some measure) of Pj , for

j = 0, 1. The LFDs for two given uncertainty classes P0 and P1 is

defined by [17] to be the pair of distributions (Q0, Q1) with densities

(q0, q1) such that

q0(y) =

{

(1− ǫ0)p0(y) for p1(y)/p0(y) < c′′

(1/c′′)(1− ǫ0)p1(y) for p1(y)/p0(y) ≥ c′′

q1(y) =

{

(1− ǫ1)p1(y) for p1(y)/p0(y) > c′

c′(1− ǫ1)p0(y) for p1(y)/p0(y) ≤ c′

where 0 ≤ c′ < c′′ ≤ ∞ are determined such that q0 and q1 are

probability densities. Let b = (1− ǫ1)/(1− ǫ0). Then we have

q1(y)

q0(x)
=











bc′ for p1(y)/p0(y) ≤ c′

bp1(y)/p0(y) for c′ < p1(y)/p0(y) < c′′

bc′′ for p1(y)/p0(y) ≥ c′′
(3)

When N = 1, the minimax error infφ P
(1)
e (φ) is achieved by letting

φ to be the likelihood ratio test using (Q0, Q1). A similar result is

proven in [18] for a parallel network configuration. In the following,

we show the same result for a tandem network (in fact, the result is

easily generalized to include all tree configurations). In the rest of

this paper, for any random variable Y with distribution drawn from

a given pair of uncertainty classes, we let l∗(Y ) be the likelihood

ratio q1(Y )/q0(Y ), where q0 and q1 are the respective densities of

the LFDs of the aforementioned uncertainty classes. We first state a

lemma given in [17].

Lemma 1. Suppose that the LFDs for (P0,P1) are (Q0, Q1). Then,

for any Q′
j ∈ Pj , where j = 0, 1, we have Q′

0(l
∗(Y ) > t) ≤

Q0(l
∗(Y ) > t) ≤ Q1(l

∗(Y ) > t) ≤ Q′
1(l

∗(Y ) > t).

For all i ≥ 1, let (Qi
0, Q

i
1) be the LFDs for (Pi

0,P
i
1), and

Q
(N)
j = Q1

j ×Q2
j × ...×QN

j for j = 0, 1.

Theorem 1. Let φ(N) be any set of monotone likelihood ratio tests

based on Q
(N)
0 and Q

(N)
1 for the tandem topology. Then for all

(P
(N)
0 , P

(N)
1 ) ∈ PN

0 × PN
1 , we have

PF (φ
(N), Q

(N)
0 ) ≥ PF (φ

(N), P
(N)
0 )

and

PM (φ(N), Q
(N)
1 ) ≥ PM (φ(N), P

(N)
1 ).

Proof. (Outline) We will only show the first inequality as the proof

for the second is similar. We proceed by mathematical induction on

N . From Lemma 1, the inequality holds for N = 1. We now assume

that the theorem holds for N < i. The likelihood ratio test for agent

i is of the form

Ui =

{

1 if l∗(Ui−1, Yi) > ti

0 otherwise
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where Ti is some threshold. Since the decision of agent i − 1 and

the observation of agent i are independent, we have

l∗(Ui−1, Yi) = l∗(Yi)l
∗(Ui−1).

As l∗(Ui−1) and l∗(Yi) are both stochastically larger under Q
(i)
0

than under any other distribution P
(i)
0 , from Lemma 2 of [18], their

product is as well. Therefore, we have

Q
(i)
0 (Ui = 1) = Q

(i)
0 (l∗(Ui−1, Yi) > ti)

≥ P
(i)
0 (l∗(Ui−1, Yi) > ti)

= P0(Ui = 1)

and the theorem holds for every N .

Let φ
(N)
∗ be the set of decision rules based on the LFDs

(Q
(N)
0 , Q

(N)
1 ). From Theorem 1, we have

inf
φ(N)

{

sup
P

(N)
0 ∈P

(N)
0

PF (φ
(N), P

(N)
0 ) + sup

P
(N)
1 ∈P

(N)
1

PM (φ(N), P
(N)
1 )

}

≤ sup
P

(N)
0 ∈P

(N)
0

PF (φ
(N)
∗ , P

(N)
0 ) + sup

P
(N)
1 ∈P

(N)
1

PM (φ(N)
∗ , P

(N)
1 )

= PF (φ
(N)
∗ , Q

(N)
0 ) + PM (φ(N)

∗ , Q
(N)
1 )

= inf
φ(N)

[PF (φ
(N), Q

(N)
0 ) + PM (φ(N), Q

(N)
1 )]

≤ inf
φ(N)

[ sup
P

(N)
0 ∈P

(N)
0

PF (φ
(N), P

(N)
0 )

+ sup
P

(N)
1 ∈P

(N)
1

PM (φ(N)P
(N)
1 )],

where the last equality holds because φ
(N)
∗ are the optimal decision

rules given that agent observations have distributions (Q
(N)
0 , Q

(N)
1 )

[10]. Therefore, the inequality signs are all equalities, and the mini-

max error in the decentralized detection problem is equal to the min-

imum error when all the distributions of the observations are exactly

equal to the LFDs. The same conclusion holds for the social learning

problem.

3. ASYMPTOTIC PROPERTIES

In this section, we study the asymptotic minimax error probability of

a tandem network for the decentralized detection and social learning

problems. We consider the cases where agents have knowledge of

their positions in the tandem or not separately.

3.1. Known Agent Positions

Since the minimax error is equal to the minimum error when all the

distributions of the observations are exactly equal to the LFDs, we

just have to study the network assuming this is the case. Asymptotic

learning is said to occur if the minimax error probability in (1) or (2)

converges to zero as N or i increases, in the decentralized detection

and social learning problem respectively. For simplicity, we let ǫ1j =

· · · = ǫNj = ǫj for j = 0, 1.

Proposition 1. Suppose that ǫ1j = · · · = ǫNj = ǫj for j = 0, 1.

Then, asymptotic learning for decentralized detection occurs if and

only if either log p1(y)/p0(y) is not upper bounded and ǫ0 = 0, or

log p1(y)/p0(y) is not lower bounded and ǫ1 = 0.

Proof. (Outline) We consider three different cases, depending on

whether ǫ0 or ǫ1 is zero.

Case 1: ǫ0 = ǫ1 = 0. This reduces to the classical Bayesian hy-

pothesis testing problem. From [16], the minimax error probability

is bounded above zero if and only if the log-likelihood ratio of P1

and P0 is bounded.

Case 2: Either ǫ0 = 0 or ǫ1 = 0, but not both. In this case, we

know exactly one of the Pi. Without loss of generality, let this be

P0. Then (Q0, Q1) = (P0, Q1) are the LFDs of P0 and P1. Since

ǫ0 = 0 and ǫ1 6= 0, we have c′′ = ∞ and c′ > 0 in (3). Note that

for p1(y)/p0(y) > c′, we have l∗(y) = bp1(y)/p0(y). Hence, if

p1(y)/p0(y) is bounded from above, then for p1(y)/p0(y) > c′,
we have 0 < bc′ ≤ l∗(y) = bp1(y)/p0(y) < ∞. This implies

that the minimax error is bounded away from zero since log(l∗(y))
is bounded (the proof is similar to case 1). On the other hand,

suppose that log p1(y)/p0(y) is not bounded from above. Thus,

log q1(y)/q0(y) is bounded from below but not from above, and

using the decision rules proposed in [16], we can make the maxi-

mum error arbitrarily small as the number of agents tends to infinity.

Case 3: ǫ0 > 0 and ǫ1 > 0. Here, c′ > 0 and c′′ < ∞ and

so the log-likelihood of Q1 and Q0 is bounded. Similar to case 2,

the minimax error is bounded above zero as N → ∞ as the log-

likelihood of Q1 and Q0 is bounded.

Similarly, we have the following result for social learning.

Proposition 2. Suppose that ǫ1j = · · · = ǫNj = ǫj for j = 0, 1.

Asymptotic learning in social learning occurs if and only if the log-

likelihood ratio of P0 and P1 is unbounded and both of ǫ0 and ǫ1 are

equal to zero.

Proposition 2 assumes that the contamination for the uncertainty

classes of the agent observations are fixed. In the following result,

we allow the contamination to vary amongst the agents. The proof

is omitted due to space constraints.

Proposition 3. The minimax error probability converges to zero in

social learning if and only if the log-likelihood ratio of P1 and P0 is

unbounded, and there exists an infinite subsequence of agents with

both ǫi0 and ǫi1 converging to zero.

3.2. Unknown Agent Positions

In a social network, users have to make their decisions not knowing

how many times a decision has been propagated from the source

node. We first start with the the case where agent observations have

the nominal distributions. If each agent has no knowledge of its

position, we assume that the optimal decision rules are likelihood

ratio tests of the following form:

Ui =











0 if p1(Yi)/p0(Yi) < t1

Ui−1 if t1 ≤ p1(Yi)/p0(Yi) < t0

1 if p1(Yi)/p0(Yi) ≥ t0

(4)

where t0 and t1 are fixed constants. The proof of this statement is

omitted due to space reasons.

Proposition 4. Suppose that the contamination of the uncertainty

classes for all agents are zero. Then, the false alarm error and
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missed detection probabilities are bounded above zero and converge

linearly to

P0(p1(Y1)/p0(Y1) ≥ t0)

P0(p1(Y1)/p0(Y1) ≥ t0) + 1− P0(p1(Y1)/p0(Y1) ≥ t1)
(5)

and

P1(p1(Y1)/p0(Y1) ≥ t0)

P1(p1(Y1)/p0(Y1) ≥ t0) + 1− P1(p1(Y1)/p0(Y1) ≥ t1)
(6)

respectively, where t0 and t1 are the thresholds in (4).

Proof. Let false alarm probability P0(Ui−1 = 1) and missed detec-

tion probability P1(Ui−1 = 0) of agent i−1 b denoted as P i−1
F and

P i−1
M respectively. The total error probability of agent i− 1 is equal

to π0P
i−1
F + π1P

i−1
M , and the false alarm error probability of agent

i is

P i
F = P0(ui−1 = 1)P0(p1(Yi)/p0(Yi) ≥ t1)

+ P0(ui−1 = 0)P0(p1(Yi)/p0(Yi) ≥ t0)

= P i−1
F P0(p1(Yi)/p0(Yi) ≥ t1)

+ (1− P i−1
F )P0(p1(Yi)/p0(Yi) ≥ t0)

= [P0(p1(Yi)/p0(Yi) ≥ t1)− P0(p1(Yi)/p0(Yi) ≥ t0)]P
i−1
F

+ P0(p1(Yi)/p0(Yi) ≥ t0).

This is a recurrence relation, and it converges linearly to (5). A sim-

ilar derivation holds for the missed detection probability, and the

proposition is proved.

We now turn our attention to the robust social learning problem.

We assume that ǫi0 is the same for any i, and a similar condition holds

for ǫi1. We also assume that each agent knows the value of ǫi0 and

ǫi1. Then, using the above decision rules with P0 and P1 replaced

by the LFDs Q0 and Q1 respectively, we can apply Theorem 1 and

conclude that the minimax error converges linearly to

π0Q0(l
∗(Yi) ≥ t0)

Q0(l∗(Yi) ≥ t0) + 1−Q0(l∗(Yi) ≥ t1)

+
π1Q1(l

∗(Yi) ≥ t0)

Q1(l∗(Yi) ≥ t0) + 1−Q1(l∗(Yi) ≥ t1)
, (7)

where the thresholds t0 and t1 are chosen to minimize (7).

We now consider the case where the contamination values can

vary. We limit our analysis to the case where ǫi0 = ǫi1 = ǫi for every

agent i. In the following result, we allow the contamination values

to converge to zero. The proof is omitted due to space constraints.

Proposition 5. Suppose that for all i ≥ 1, ǫi0 = ǫi1 = ǫi, and each

agent uses the decision rule (4). If ǫi → 0 as i → ∞, the false alarm

and missed detection probabilities in social learning converges to (5)

and (6) respectively.

4. NUMERICAL RESULTS

In this section, we provide numerical results for the case where the

agent observations’ nominal distributions are zero mean Gaussian

distributions with variance 25 and 1 under hypothesis H0 and H1 re-

spectively. We consider three cases under the social learning frame-

work: for every i, we have either (i) ǫi0 = ǫi1 = 0, (ii) ǫi0 = ǫi1 =
0.01 × 0.75i−1, or (iii) ǫi0 = ǫi1 = 0.01. Figure 1 shows the mini-

max error probability of these three cases. It can be seen that at all
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Fig. 1. Social learning minimax error probability under different

levels of contamination for the uncertainty classes.

points on the curve, the error probability of the case with no contam-

ination in the uncertainty classes is no worse than that of the case

with a decaying level of contamination, which in turn is no worse

than the case with a constant level of contamination. This is quite

an intuitive result, as less uncertainty implies that an agent is able to

better optimize its local error probability, which will in turn aid the

next agent in better optimizing its local error probability under the

social learning rules.

Because the log-likelihood ratio of the conditional probability

distributions are bounded from above but not below, each agent can

receive arbitrarily strong observations in favor of H0, but not H1.

Hence, the false alarm error probabilities for all the three cases con-

verge to zero, and the asymptotic minimax error probability is equal

to half of the asymptotic missed detection probability. It should

be noted that if the probability distributions are such that the log-

likelihood ratios are unbounded from above as well, the asymptotic

minimax error probability of the case with no contamination and the

case with decaying contamination is expected to converge to zero,

while that of the case with a constant amount of contamination is

expected to be still bounded above zero.

5. CONCLUSION

We have shown that with some uncertainty in the observation distri-

butions of a tandem network, the minimax error probability is ob-

tained by assuming that each observation is distributed according to

the LFDs of the uncertainty class. For a tandem topology with con-

stant contamination in the uncertainty classes under both hypothesis,

the asymptotic minimax error probability is bounded above zero.

However, the social learning minimax error probability converges

to zero if the amount of contamination decays to zero, and the log-

likelihood ratio of the nominal distributions are unbounded. The

above conclusions hold only if agents know their positions in the

tandem. In many social learning scenarios, agents have no knowl-

edge of their positions. We have provided error bounds for this case,

and shown that if the uncertainty classes’ contamination converges

to zero, the minimax error probability also converges to this bound.
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