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ABSTRACT

In this paper, we propose a method to measure the relationship
between data samples, which is dependent on the possibili-
ty whether they are within a homogeneous region or not. By
considering the regional variation, this possibility is formulat-
ed in terms of the maximum local variation along the shortest
path connecting the samples. The metric is concretized in
both 2D images and 3D meshes, and then integrated into s-
moothing filters. Benefited from our method, the improved
filters tend to effectively preserve the structural component of
data. Moreover, our method is implemented in various ap-
plications such as image denoising, image decomposition and
mesh smoothing, which demonstrates better performance in
comparison to the previous work.

Index Terms— Image Smoothing, Mesh Smoothing,
Tone Mapping, Adaptive Filter, Image Decomposition

1. INTRODUCTION

Evaluating the relationship among data samples is usually a
fundamental step in data restoration and decomposition. An
elegant formulation of the sample relationship can be com-
monly used in image/video editing [1] and 3D processing ap-
plications, such as image denoising [2, 3, 4, 5], superpixel [6],
tone mapping [7], 3D mesh smoothing [8, 9], etc. An success-
ful example of these works is bilateral filtering [2, 8], in which
the spatial closeness and the property similarity contribute to
the locally adaptive weights of filtering. In this paper, a gener-
ic formulation is proposed to measure the region homogeneity
between data samples, and applied to either 2D image or 3D
mesh smoothing.

In the prior arts, the regional factors have been considered
to improve the performance of previous filters. Nonlocal-
means (NLM) filter [3] extends the similarity of pair-wise
pixels to that of the neighborhood pairs. One kind of trilat-
eral denoising algorithms [4] estimates the reliability of the
filtering neighborhood by impulsive noise detection. Another
trilateral filter [10] is fundamentally a piecewise bilateral fil-
ter which works in unit of homogeneous region. In [11], the
geodesic distances are taken as the filtering weights, which es-
sentially sums up the region-crossing-cost in its path finding
process. In this paper, we quantify the region homogeneity

∗Corresponding author: tao.luo@technicolor.com

(RH) into a graded scalar to overcome the uncertainty caused
by the thresholding to determine the homogeneous regions
in [10]. Moreover, the value of RH takes the maximum of
the region-crossing-cost rather than the sum, and thus avoids
overestimating the cost across complex texture, which proba-
bly occurs in [11].

Take the image in Fig. 1 for example, the region homo-
geneity between points a and b relies on the local variation
(LV) along the path ab. Obviously, the sharp edges between a
and b, which correspond to the significant spikes in the white
curve, are the key factors determining whether a and b are in
a homogeneous region or not. Thus, the region homogeneity
between them can be defined as

RHab = max {LVij |i, j ∈ pathab, j ∈ N(i)}, (1)

where i and j denote a pair of adjacent data samples. pathab

is the predefined shortest path, which can be the geodesic
path [11], or the straight line. N(i) denotes the neighbor-
hood of the sample i. For the case of 3D meshes, the path can
be defined along the mesh edges or across the mesh triangles.
In this paper, the proposed metric of region homogeneity be-
tween data samples is concretized in 2D images and 3D mesh-
es respectively. It should be noted that the definition in (1) is
not limited to 2D images or 3D meshes, and it can be extend-
ed to n-dimensional signals with the corresponding definition
of local variation.

Fig. 1. Region homogeneity and local variation. The white
curve denotes the amplitude of LV along the orange path.

2. GENERIC REGION HOMOGENEITY FOR 2D
IMAGES AND 3D MESHES

As shown in (1), the proposed region homogeneity depends
on the definitions of the local variation and the shortest path.
In this section, we formulate them for 2D images and 3D
meshes, respectively, according to the generic definition.
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2.1. Formulation in images

The region homogeneity of two pixels in an image I is mea-
sured by the maximum local variation along a shortest path
between them. Considering that filtering window in most al-
gorithms is relatively small, a straight line between the two
pixels is taken as the shortest path in our method. Regarding
to the local variation, it is defined on a candidate edge select-
ed in the region surrounded by the two pixels. Intuitively, the
possibility of two pixels being in a homogeneous region can
be measured by the strongest local variation along the path.
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Fig. 2. The candidate edges (dashed) along line segment ab.

As shown in Fig. 2, a part of pixels in the 7 × 7 window
centered at pixel a is depicted and pixel b is one of its neigh-
bors. In order to compute the region homogeneity between
pixels a and b, the shortest path is defined as the line seg-
ment ab. And the local variation along ab is computed as the
strength of a selected candidate edge. In Fig. 2, a dashed edge
ij indicates a candidate edge, along which the local variation
between pixel i and j is defined as,

LVij = |I(i)− I(j)|, (2)

where I(i) and I(j) denote the color values of pixel i and pixel
j, respectively.

To determine a set of candidate edges Ωab, the pixels in
the region surrounded by a and b are taken into account as
the region bounded by the red dash lines in Fig. 2. And the
edges connecting a pair of these pixels with the length of 1
or

√
2 are utilized to determine whether they are the candi-

date edges, which means that only the horizonal, vertical and
diagonal edges are considered. For each edge ij, if its mid-
perpendicular segment ij⊥ with the length of ∥ij∥ intersects
with the line segment ab, it is selected as the candidate edge
to compute local variation. In Fig. 2, the two solid line seg-
ments in red are the midperpendicular segments of the edge
p1q1 and p2q2, respectively. Thus, the set of candidate edges
along ab is formulated as,

Ωab =
{
ij|ij⊥ ∩ ab * {ø, a, b}, ∥ij⊥∥ = ∥ij∥ = 1 or

√
2
}
.

(3)
Finally, the region homogeneity rab between a and b is

computed by
rab = max

ij∈Ωab

{LVij}. (4)

Compared with the geodesic-path based algorithms, less com-
putational expense is cost using our method. Furthermore, the

structural feature can be preserved well during filtering op-
erations, which is beneficial for the applications like image
denoising or decomposition.

2.2. Formulation in 3D meshes

In this section, we present the region homogeneity between
the facets of a 3D mesh, which is defined as the maximum lo-
cal variation along a shortest path connecting their centroids.
The local variation can be measured between two adjacent
facets using the geometric attributes, such as position, normal
or curvature. And the path is defined on the dual graph of
the original mesh using the shortest distance, along which the
maximum local variation is obtained.

Given a 3D mesh M with n vertices and m facets, we
construct its dual graph G, on which each node represents
one facet and each edge indicates the adjacency of two facets.
A node of G can be represented by the centroid of its corre-
sponding facet, so there are in total m nodes. To determine the
region homogeneity between facet fa and fb, where fb is one
of the facets in a predefined neighborhood of fa, the short-
est path pathab between node a and b on the dual graph is
approximated using the graph edges with the shortest length.
For each constituent edge eij along the path, the local vari-
ation LVij is computed by ϕ(eij). Thus, the region homo-
geneity rab can be measured by the maximum local variation
along pathab, which is expressed as,

rab = max
pathab

{ϕ(eij)}, eij ∈ pathab. (5)

The local variation ϕ(eij) is computed as the difference
between the facet variations on node i and j, that is ϕ(eij) =
|βi − βj |. To calculate the facet variation on each node of
the dual graph, we first compute the vertex variation around
each vertex on the original mesh. For one vertex v, N(v)
denotes the set of its 1-ring neighboring vertices, whose car-
dinality is |N(v)|. Denote by A the coordinate difference
between the neighboring vertices and vertex v, that is A =
[v1 − v, · · · , vk − v, · · · , v|N(v)| − v]. Thus, the covariance
matrix around v is computed as,

C =
1

|N(v)|
AAT . (6)

Then, the vertex variation around vertex v can be mea-
sured using the three eigenvalues (λ1 ≤ λ2 ≤ λ3) of the
matrix C, that is αv = λ1/(λ1 + λ2 + λ3). For each n-
ode of the dual graph, the facet variation βi is computed as
βi = (αv1 + αv2 + αv3)/3, where v1, v2, v3 are the vertex
indices of the triangular facet fi.

3. 2D IMAGE AND 3D MESH SMOOTHING

3.1. Image Smoothing

The proposed region homogeneity can be integrated directly
into a locally adaptive filtering framework, which is expressed
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as,

h(a) =

∫∞
−∞ f(b)g(∥a− b∥)g(|f(a)− f(b)|)g(rab)db∫∞

−∞ g(∥a− b∥)g(|f(a)− f(b)|)g(rab)db
,

(7)
where ∥a−b∥, |f(a)−f(b)| and rab measure the spatial close-
ness, the similarity, and the region homogeneity between the
target pixel a and a nearby pixel b, respectively. And g(x)
denotes a Gaussian function g(x) = exp(−x2/2σ2). The
influence of the spatial, intensity and region factors are con-
trolled by the corresponding Gaussian parameters σ. Com-
pared to bilateral filter, the computational cost comes from
the calculation of four gradient maps for the entire image and
the maximization operation for each pixel.

3.1.1. Image Denoising

We apply this filter to image denoising and compare the re-
sults with two representative approaches with bilateral (BL)
filter [2] and nonlocal-means (NLM) filter [3]. In Fig. 3,
the image womanhat with Gaussian noise (standard deviation
σ = 10) is denoised by the three approaches. As can be seen,
by introducing the factor of the region homogeneity, the re-
sult leads to better structure-preserving feature. For Gaussian
noise, the performance of our filter is comparable to NLM fil-
ter. However, the averaging strategy of NLM filter benefits
from the statistics of Gaussian noise rather than other types
of noise. As plotted in Fig. 4, our approach has an obvious
advantage for Salt&Pepper noise, which demonstrates its ro-
bustness to the noise types.

3.1.2. Image Decomposition

The proposed filter (7) is also capable of decomposing an im-
age into a base layer and detail layers as shown in Fig. 5. Im-
age decomposition is employed in various applications such
as High Dynamic Range (HDR) imaging. In order to display
HDR images on low dynamic range devices, the original set
of colors are mapped to a subset [10]. This process, known as

Ours   34.22dB
Bilateral   33.49dBNL-Means   34.12dB

Fig. 3. Subjective quality of the denoised images womanhat.
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Fig. 4. Denoising results on House with Salt&Pepper noise.
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Fig. 5. Image decomposition.

tone mapping, decomposes the image and magnifies the detail
layers to keep low-contrast details visible. Thus, it is desired
that the filter keep the structures of images in the base layer
as well as possible.

Fig. 6 presents the result of tone mapping using the pro-
posed filter. And it can be seen that the detail layer extracted
by our approach focuses on the low-contrast textures. In com-
parison, some structures are involved in the detail layer using
bilateral decomposition [7], which makes the detail magnifi-
cation easily exceed the dynamic range of the devices. More-
over, the edges are usually blurred by bilateral filtering. The
blur of the detail layer is magnified by rescaling and there-
fore some halo-like artifact is then generated. As shown in
Fig. 7, tone mapping with bilateral filter generates undesired
halo-like artifact along all the edges of the image while our
approach produces a more natural appearance.

3.2. Mesh Smoothing

Conventional mesh smoothing methods typically utilize the
geometric property (e.g., normal) and the Euclidean distance
to measure the correlation between primitives (vertices or
facets). In this section, we employ the regional variation
to enhance the structure-preserving performance of mesh
smoothing. The face normals are first smoothed with consid-
eration of the proposed region homogeneity. Then the vertex
coordinates are optimized according to the smoothed normal-
s. This process can be implemented in an iterative manner
when the noise is heavy.

To smooth the normal na of a facet fa, the region homo-
geneity rab between facet fa and its neighboring facet fb is
computed using the aforementioned definition in section 2.2,
which allows to enlarge the neighborhood for the smooth-
ing robustness. Since the similarity measurement in bilateral
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Fig. 6. Tone mapping based on detail magnification.

Proposed

Bilateral Filter

Fig. 7. HDR imaging with bilateral filter and our filter. Our
method does not generate undesirable halo artifact.

mesh denoising [8] tends to be unreliable for distant vertices,
it is thus replaced by the region homogeneity measurement.

Then, the normal na of facet fa is smoothed into,

n′
a =

∑
fb∈N(fa)

g(rab)g(∥ca − cb∥)nb∑
fb∈N(fa)

g(rab)g(∥ca − cb∥)
, (8)

where nb is the normal of facet fb. And ca, cb denote the
centroid positions of fa, fb, respectively.

After the face normals are smoothed on the dual graph,
the vertex positions can be updated on the original mesh by,

v′k = vk +
1

|Nf (vk)|
∑

fa∈Nf (vk)

n′
a(n

′
a · (ca − vk)), (9)

where |Nf (vk)| denotes the number of the neighboring facets
of vertex vk.

In the experiment, the classical bilateral (BL) denois-
ing [8] and the feature-preserving mesh denoising (FP-
MD) [9] are implemented for comparison. As shown in Fig. 8,
the noisy Igea model (courtesy of Cyberware) is smoothed
using these three methods. It can be seen that there are more
structures using our approach in Fig. 8(d). For quantitative
comparison, we employ the MESH tool [12] to compute the
mean distance between the smoothed model surfaces and the

(a) Noisy model (b) BF [8]

(c) FPMD [9] (d) Ours

Fig. 8. Comparative results of mesh denoising.
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Fig. 9. Error comparison (×10−4).

ground truth. The Happy Buddha, Dragon (courtesy of S-
tanford) and Max Planck (courtesy of Max Planck Institute)
models are artificially corrupted by Gaussian noise with zero
mean and variance of 1/5 of their average edge lengths. As
shown in Fig. 9, the offsets of the surfaces smoothed by our
method is the smallest among the three methods. Therefore,
taking the proposed region homogeneity into consideration is
beneficial to mesh denoising while preserving the structures.

4. CONCLUSION

In this paper, we introduce a type of region homogeneity to
measure how likely two data samples are within a homoge-
neous region. Generally, it depends on the maximum lo-
cal variation along the shortest path connecting data samples
for either 2D images or 3D meshes. By considering such a
factor in locally adaptive filtering, the structural part of da-
ta can be well preserved . As shown in the results of im-
age and mesh smoothing, the improved filters perform better
compared with the representative methods. However, the im-
provement would be limited during image filtering with large
window size.
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