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ABSTRACT

This paper investigates the problem of linear spatial collaboration for
distributed estimation in wireless sensor networks. In this context,
the sensors share their local noisy (and potentially spatially corre-
lated) observations with each other through error-free, low cost links
based on a pattern defined by an adjacency matrix. Each sensor con-
nected to a central entity, known as the fusion center (FC), forms
a linear combination of the observations to which it has access and
sends the resulting signal to the FC through an orthogonal fading
channel. The FC combines these received signals to find the best
linear unbiased estimator of the vector of unknown signals observed
by individual sensors. The main novelty of this paper is the deriva-
tion of an optimal power-allocation scheme in which the coefficients
used to form linear combinations of noisy observations at the sen-
sors connected to the FC are optimized. Through this optimization,
the total estimation distortion at the FC is minimized, given a con-
straint on the maximum cumulative transmit power in the entire net-
work. Numerical results show that even with a moderate connectiv-
ity across the network, spatial collaboration among sensors signifi-
cantly reduces the estimation distortion at the FC.

Index Terms— Distributed linear unbiased estimation, BLUE
estimator, linear spatial collaboration, power allocation, fusion cen-
ter, wireless sensor networks.

1. INTRODUCTION

One of the main applications of wireless sensor networks (WSNs)
is distributed estimation in which spatially distributed sensors make
noisy observations of (potentially correlated) signals, process their
observations locally, and transmit their processed data to a central
entity, known as the fusion center (FC), through communication
channels corrupted by fading and additive noise. The FC will then
combine the received signals to estimate either individual signals
observed by local sensors or a parameter correlated with them. In
most studies in the literature, it is assumed that the sensors do not
communicate and/or collaborate with each other, and that the local
processing is performed only on each sensor’s observed noisy sig-
nal [1–14]. In this paper, we investigate the problem of distributed
estimation under the assumption that local sensors collaborate with
each other by sharing their local noisy observations. Consequently,
the processing at each sensor connected to the FC will be performed
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on the combination of the sensor’s own observations and those of the
other sensors to which it has access.

Bahçeci and Khandani [1] have studied a WSN in which lo-
cal sensors make noisy observations of correlated Gaussian signals.
They have assumed that each sensor amplifies its own local noisy
observation before sending it to the FC through orthogonal channels
corrupted by Rayleigh flat fading and additive white Gaussian noise.
The FC will then combine the received signals from spatially dis-
tributed sensors to estimate the set of correlated signals observed by
local sensors, either using the best linear unbiased estimator (BLUE)
or the minimum mean squared-error estimator (MMSE). They have
derived the optimal power-allocation scheme that minimizes the total
cumulative transmit power in the entire network, given a constraint
on the maximum estimation distortion at the FC, measured either as
the estimation variance of each individual signal observed by one of
the sensors, or as the average estimation variance of all signals of
interest. It is crucial to emphasize that [1] assumes that there is no
communication and/or collaboration among sensors.

Kar and Varshney [15] have studied the optimal power allocation
for a WSN in which sensors collaborate with each other by sharing
their local noisy observations. To the best of our knowledge, this is
the first work that has considered sensor collaboration in the context
of distributed estimation. In the system model studied in [15], each
sensor connected to the FC, which in general could be in a subset of
all sensors, forms a linear combination of its own noisy observation
and the observations of other sensors to which it has access. This op-
eration is known as the linear spatial collaboration. The sensor will
then send the resulting linearly processed signal to the FC through a
coherent multiple access channel (MAC). The FC will find the lin-
ear minimum mean squared-error estimator (LMMSE) of a scalar
random signal observed by spatially distributed sensors. The gains
used to form the linear combinations at local sensors are optimized
to minimize the LMMSE distortion, given a constraint on the max-
imum per-sensor or cumulative transmit power in the network. The
results of their investigations show that even a moderate connectivity
in the WSN could drastically reduce the estimation distortion at the
FC.

As the system model of the WSN described in Section 2 shows,
our goal in this paper is to generalize the network model studied
in [1] by assuming that (a) the observation noises and channel noises
are spatially correlated, (b) a subset of sensors is not directly con-
nected to the FC, and more importantly, (c) the sensors collaborate
with each other by sharing their local noisy observations through
error-free, low cost links. The most important aspect of this net-
work model is the linear spatial collaboration among local sensors.
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Fig. 1: System model of a WSN with error-free inter-sensor collab-
oration in which the FC finds an estimate of θ � [θ1, θ2, . . . , θK ]T .

Furthermore, we will study a generalized version of the problem in-
vestigated in [15]. In contrast with [15], the FC in our system model
estimates the individual signals observed by distributed local sensors
and not just an underlying scalar parameter that is collaboratively
observed by the entire network. Moreover, we consider the com-
munication channels between the connected sensors and the FC to
be orthogonal rather than a coherent MAC. Another contribution of
our work is that the FC finds the BLUE estimator of the vector of
unknown signals observed by local sensors rather than the LMMSE
estimator. Note that unlike the LMMSE estimator, which depends on
the statistics of the signals being observed and estimated, the BLUE
estimator is independent of the source statistics and is useful when
the information about the signals to be estimated is limited.

As the problem formulated in Section 3 and its proposed solution
for the above linear spatial collaboration show, we will derive the
optimal power-allocation scheme or equivalently, the optimal set of
the weights used to form linear combinations of shared observations
at each sensor connected to the FC. The goal of of this optimiza-
tion approach is to minimize the sum of the estimation variances of
the BLUE estimators for different signals observed by local sensors,
given a constraint on the average cumulative transmit power in the
entire network. The numerical results provided in Section 4 show
the applicability and effectiveness of the proposed scheme.

2. SYSTEM MODEL

Consider a wireless sensor network (WSN) composed of K spatially
distributed sensors, each one of which observes a noisy version of a
local signal of interest as shown in Fig. 1. Assume that M ≤ K
sensors are connected to a fusion center (FC). Using the received
faded and noisy versions of locally processed sensor observations
from a subset of sensors that are connected to it, the FC tries to find
the best linear unbiased estimate (BLUE) of the vector of signals ob-
served by individual sensors.1 Note that one of the major differences
between the system considered here and most of the studies in the
literature is that in our model (similar to [1]), the FC estimates the
individual signals observed by local sensors rather than combining
the observations to estimate a set of the underlying parameters that
are correlated with the collection of local observations.

Suppose that each sensor makes a noisy observation of a local
signal of interest as

xi = θi + ni, i = 1, 2, . . . ,K, (1)

1It is assumed that the observations of each sensor are communicated to the
FC by itself if it is connected to the FC, by a subset of connected sensors to
the FC with which it shares its observations if it is not directly connected to
the FC, or by both.

where xi is the local noisy observation at the ith sensor, θi is the lo-
cal unknown signal to be estimated at the FC, and ni is the observa-
tion noise. Assume that the random vector of signals observed at dif-
ferent sensors θ � [θ1, θ2, . . . , θK ]T has zero mean and is spatially

correlated with the known auto-correlation matrix Rθ � E
[
θθT

]
,

where (·)T represents the vector/matrix transpose operation and E [·]
denotes the expectation operation. Furthermore, assume that the vec-
tor of observation noises n � [n1, n2, . . . , nK ]T is Gaussian with

zero mean and Rn � E
[
nnT

]
as its auto-correlation matrix, i.e.,

n ∼ N (0,Rn). It is assumed that the random vectors θ and n are
independent.

With the exception of [15], most studies in the literature assume
that there is no inter-sensor communication and/or collaboration, and
that each sensor processes only its own local noisy observation be-
fore transmitting it to the FC. In this paper, we assume that the sen-
sors share their observations with each other through low cost, error-
free links.2 Suppose that the inter-sensor connectivity is modeled by
an M -by-K adjacency matrix A, whose elements are either zero or
one. If Aj,i = 1, then sensor j has access to the local observation
of sensor i through a low cost link. Otherwise, Aj,i = 0. Note
that in general, the adjacency matrix A is not necessarily symmetric
since a sensor may receive the observations of a subset of other sen-
sors, but it may not share its own observations with them. Moreover,
Aj,j = 1, j = 1, 2, . . . ,M , as each sensor has access to its own
local observations.

Suppose that the sensors are sorted so that the first M sensors
are connected to the FC. Each connected sensor to the FC uses an
amplify-and-forward strategy and forms a linear combination of all
local observations to which it has access as

yj =

K∑
i=1

Aj,i=1

wj,ixi, j = 1, 2, . . . ,M, (2)

where yj is the transmitted signal by the jth sensor, and wj,i is the
weight of the ith observation in the linear combination that sensor j
forms to be transmitted to the FC. Note that the above analog local
processing can be rewritten in a vector form as y = Wx, where
y � [y1, y2, . . . , yM ]T is the vector of transmitted signals from the

sensors that are connected to the FC, x � [x1, x2, . . . , xK ]T is the
vector of local noisy observations, and W is an M -by-K mixing
matrix. It could easily be seen that Wj,i = 0 if Aj,i = 0, and
Wj,i = wj,i if Aj,i = 1. Note that the average cumulative transmit
power of the entire network can be found as

PTotal = E

[
yTy

]
= E

[
xTWTWx

]
= Tr

[
E

[
yyT

]]
= Tr

[
W (Rθ +Rn)W

T
]
, (3)

where Tr [·] denotes the trace operation of a square matrix. There-
fore, the choice of the mixing matrix W affects the average cumula-
tive transmit power of the network. Hence, determining the mixing
matrix W could be considered a power-allocation strategy.

The channel between each sensor and the FC is assumed to be
corrupted by fading and additive Gaussian noise. The received signal
from sensor j at the FC is modeled as

rj = gjyj + vj , j = 1, 2, . . . ,M, (4)

2If the distance between sensors is a lot smaller than the distance between
sensors and the FC, we could ignore the transmission cost of inter-sensor
communications.
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where gj is the spatially independent fading coefficient of the chan-
nel between sensor j and the FC, and vj is the channel noise. Note
that the channels are assumed to be orthogonal. Suppose that the
vector of channel noises v � [v1, v2, . . . , vM ]T is Gaussian with

zero mean and Rv � E
[
vvT

]
as its auto-correlation matrix, i.e.,

v ∼ N (0,Rv). The above model for the communication channels
between local sensors and the FC could be rewritten in a vector form
as

r = Gy + v = GWx+ v = GWθ +GWn+ v, (5)

where r � [r1, r2, . . . , rM ]T is the vector of the received signals
from local sensors at the FC, and G = diag (g1, g2, . . . , gM ) is a
diagonal M -by-M matrix, whose mth diagonal element is the fad-
ing coefficient of the channel between sensor m and the FC. In this
paper, we assume that the FC has perfect knowledge of the instanta-
neous fading coefficients of the channels between local sensors and
itself. This requirement could be satisfied by, for example, using
pilot signals.

3. OPTIMAL POWER ALLOCATION FOR LINEAR
SPATIAL COLLABORATION

It can be seen from (5) that, due to the independence of n and v,
given a realization of the vector of locally observed signals θ and
a realization of the fading coefficients of the channels between local
sensors and the FC, the received vector of signals at the FC is a Gaus-
sian random vector with mean μr|{θ,G} = GWθ and covariance

matrix Rr|{θ,G} = GWRnW
TGT +Rv. In other words,

r
∣∣ {θ,G} ∼ N

(
GWθ,GWRnW

TGT +Rv

)
. (6)

Upon receiving the faded and noisy version of the vector of locally
processed observations, the FC finds the BLUE estimator for the
vector of observed signals θ as follows [16, Chapter 6]:

θ̂ =

(
WTGT

(
GWRnW

TGT +Rv

)−1

GW

)−1

WTGT
(
GWRnW

TGT +Rv

)−1

r, (7)

where the corresponding covariance matrix of the BLUE estimator
can be found as

Rθ̂ = E

[(
θ̂ − θ

)(
θ̂ − θ

)T
]

=

(
WTGT

(
GWRnW

TGT +Rv

)−1

GW

)−1

(8)

Note that the calculation of the BLUE estimator is independent of
the statistics of the signal to be estimated θ. As it can readily be
observed from (8), the choice of the mixing matrix W affects the
estimation distortion at the FC, which can be defined based on the
given covariance matrix of the BLUE estimator.

The goal of this paper is to derive the optimal mixing matrix
W that minimizes the total distortion in the estimation of θ at the
FC, given a constraint on the average cumulative transmit power of
local sensors. We define the total estimation distortion at the FC
as the trace of the covariance matrix of the BLUE estimator, which
is the sum of the estimation variances for different components of

θ. This objective could be formulated as the following optimization
problem:

minimize
W

Tr

[
WTGT

(
GWRnW

TGT +Rv

)−1

GW

]−1

subject to Tr
[
W (Rθ +Rn)W

T
]
≤ P0

(9)

where P0 is the constraint on the total average transmit power in the
entire network. The following lemma could be used to simplify the
objective function of the above constrained optimization problem.

Lemma 1. A lower bound on Tr
[
Rθ̂

]
can be found as

Tr
[
Rθ̂

] ≥ K2

Tr
[
WTGT (GWRnWTGT +Rv)

−1 GW
] . (10)

Proof. It is proved in [2, Lemma 1] that for any arbitrary real matrix
Φ and any positive semi-definite real matrix Λ of proper sizes, the
following inequality holds:

Tr
[
ΦTΛ−1Φ

]
≥

(
Tr

[
ΦTΦ

])2
Tr [ΦTΛΦ]

. (11)

Let Φ = IK and Λ = Rθ̂ , where IK denotes the K-by-K identity
matrix. The lower bound of the lemma would be readily derived.

Using Lemma 1, the optimization problem of (9) can be rewrit-
ten as follows:

maximize
W

Tr

[
WTGT

(
GWRnW

TGT +Rv

)−1

GW

]
subject to Tr

[
W (Rθ +Rn)W

T
]
≤ P0

(12)

Lemma 2. The optimization problem given in (12) is equivalent to
the following form:

minimize
W,γ,Γ

γ

subject to Tr
[
W (Rθ +Rn)W

T
]
≤ P0(

Γ R−1
n

R−1
n WTGTR−1

v GW +R−1
n

)
� 0

Tr [Γ] ≤ γ

(13)

where γ is a real scalar, Γ is a symmetric K-by-K real matrix, and
Υ � 0 denotes that the matrix Υ is positive semi-definite.

Proof. Based on the Woodbury matrix inversion lemma [17, Page
19], for any arbitrary matrix Υ and any non-singular matrices Φ
and Λ of proper sizes, if the matrix Φ + ΥΛΥT is non-singular,
then the following identity holds:(

Φ+ΥΛΥT
)−1

= Φ−1−

Φ−1Υ
(
Λ−1 +ΥTΦ−1Υ

)−1

ΥTΦ−1. (14)

Let Φ � R−1
n , Λ � R−1

v , and Υ � WTGT . Using the above
matrix identity, the argument of the trace operation in the objective
function of (12) could be simplified as

WTGT
(
GWRnW

TGT +Rv

)−1

GW = R−1
n −

R−1
n

(
WTGTR−1

v GW +R−1
n

)−1

R−1
n . (15)
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Hence, the optimization problem defined in (12) can be rewritten as

minimize
W

Tr

[
R−1

n

(
WTGTR−1

v GW +R−1
n

)−1

R−1
n

]
subject to Tr

[
W (Rθ +Rn)W

T
]
≤ P0

(16)

Let γ be a real scalar such that for any mixing matrix W

Tr

[
R−1

n

(
WTGTR−1

v GW +R−1
n

)−1

R−1
n

]
≤ γ. (17)

There exists a symmetric K-by-K real matrix Γ such that [3]

R−1
n

(
WTGTR−1

v GW +R−1
n

)−1

R−1
n � Γ (18a)

and Tr [Γ] ≤ γ (18b)

where Φ � Λ means that the matrix Λ−Φ is positive semi-definite,
denoted as Λ−Φ � 0. In other words,

Γ−R−1
n

(
WTGTR−1

v GW +R−1
n

)−1

R−1
n � 0. (19)

Based on the Schur’s complement theorem [17, Page 472], for
any arbitrary matrix Υ and any symmetric matrices Φ and Λ of
proper sizes, if Λ is invertible and Λ � 0, then Φ−ΥΛ−1ΥT � 0
if and only if (

Φ Υ

ΥT Λ

)
� 0, (20)

where Λ � 0 means that the matrix Λ is positive definite. Let Φ �
Γ, Υ � R−1

n , and Λ � WTGTR−1
v GW + R−1

n . Using the
Schur’s complement, the condition shown in (19) is equivalent to
the following matrix being positive semi-definite:(

Γ R−1
n

R−1
n WTGTR−1

v GW +R−1
n

)
� 0. (21)

Based on the above discussions, the optimization problem given
in (16) is equivalent to the constrained optimization problem defined
in (13), and the proof of Lemma 2 is concluded.

The constrained optimization problem defined in (13) is a linear
programming with bi-linear matrix-inequality constraints. It could
efficiently be solved using numerical solvers such as PENBMI [18],
which is fully integrated within the MATLAB R© environment
through version 3.0 of the YALMIP interface library [19].

4. NUMERICAL RESULTS

In this section, the results of numerical simulations are presented to
show the effect of spatial collaboration among sensors on the estima-
tion performance at the FC of a WSN. Suppose that K = 6 sensors
are randomly and uniformly distributed in the two-dimensional rect-
angle of [−10, 10]× [−5, 5], where × denotes the Cartesian product
of two sets. It is assumed that all sensors are connected to the FC,
i.e., M = K. Suppose that the covariance between the signals ob-
served by sensors i and j is defined as

Rθi,j � E [θiθj ] = σ2
θ ρi,j , i, j = 1, 2, . . . ,K, (22)

where σ2
θ is the variance of each component of the vector of signals

to be estimated θ, and ρi,j is the inter-sensor correlation coefficient
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Fig. 2: Total estimation distortion at the FC versus the average cu-
mulative transmission power for different degrees of spatial collabo-
ration within two random network realizations.

that monotonically decreases with the increase of the distance be-
tween sensors as

ρi,j � e
−
(

di,j
β1

)β2

, i, j = 1, 2, . . . ,K, (23)

where di,j is the distance between sensors i and j, β1 > 0 is the
normalizing factor of the distances, and 0 < β2 ≤ 2 controls the
rate of the decay of the correlation coefficients. Note that ρi,i = 1,
i = 1, 2, . . . ,K. Assume that the vector of observation (channel)
noises n (v) is homogeneous and equi-correlated with its covariance
matrix defined as

Rn(v) = σ2
n(v)

[(
1− λn(v)

)
IK(M) + λn(v)11

T
]
, (24)

where σ2
n(v) is the variance of each component of the vector of ob-

servation (channel) noises n (v), λn(v) is the constant correlation
coefficients between each pair of distinct components of n (v), and
1 is the column vector of all ones with appropriate length. In our
simulations, the communication channels between local sensors and
the FC are assumed to have unit gain, i.e., gj = 1, j = 1, 2, . . . ,M .
The following values are used for the parameters of the system to
generate the simulation results presented in this section: σ2

θ = 1,
β1 = 6, β2 = 3, σ2

n = 0.1, σ2
v = 0.01, and λn = λv = 0.1.

Figure 2 shows the total estimation distortion at the FC, as de-
fined by the objective function of the optimization problem (9), ver-
sus the total average transmit power in the entire network P0 for
two network realizations. Each sensor collaborates with its q closest
neighbors by sharing its local noisy observations with them through
error-free, low cost links. Note that q = 0 represents a network
without any spatial collaboration, and q = K − 1 corresponds to a
network with full spatial collaboration. As evident from this figure,
even moderate collaboration among sensors could decrease the esti-
mation distortion. The collaboration gain is more significant when
the signals to be estimated have a higher correlation, i.e., the sensors
observing them are located more closely, as depicted in Network 2.

5. CONCLUSIONS

In this paper, we studied the effect of spatial collaboration on the per-
formance of the BLUE estimator at the FC of a WSN that tries to es-
timate the vector of spatially correlated signals observed by sensors,
rather than the well-studied case of estimating a parameter correlated
with the local observations. An optimal linear spatial-collaboration
scheme was derived that minimizes the sum of the estimation vari-
ances for different signals observed by the network, given a con-
straint on the average cumulative transmission power. The numerical
results showed that even a small degree of connectivity and spatial
collaboration in the network could improve the quality of the esti-
mators at the FC.
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[18] M. Kočvara and M. Stingl, “PENBMI,” Version 2.1, 2004, See
www.penopt.com for a free developer version.
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