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ABSTRACT can thereby be computed without global cooperation [8]. The decen-
tralized alternating direction method of multipliers (ADMM) mod-
This paper develops a decentralized linearized alternating directioifies dual ascent by introducing a quadratic regularization term and
method of multipliers (LADMM) that minimizes the sum of local improves its numerical stability and rate of convergence [9, 10, 11].
cost functions in a multi-agent network. Through linearizing the lo-  The main advantage of the primal domain methods is their low
cal cost functions agents can obtain their local solutions with simplgomputation burden. The average and (sub)gradient descent opera-
algebraic operations and gradient descent steps. We prove that théns are simple and hence affordable to those agents having limited
algorithm linearly converges to the optimal solution given that thecomputation abilities. However, the existing primal domain meth-
local cost functions are strongly convex and have Lipschitz gradiods suffer from either slow convergence or low accuracy. With time-
ents. The decentralized LADMM has similar computations as thesarying stepsizes, the distributed (sub)gradient method and the dual
distributed (sub)gradient method but outperforms the latter, whickweraging method converge to the optimal solution at sublinear rates
is unable to achieve linear rate of convergence and convergence [, 7]. If the stepsize is constant, the distributed gradient method
the exact optimal solution simultaneously. Compared to its nonis able to achieve a linear rate of convergence under the assumption
linearized counterpart that suffers from high computation burdenthat the local cost functions are strongly convex and have Lipschitz
the decentralized LADMM has a comparable rate of convergencgradients; however, the algorithm converges to a neighborhood of
according to both theoretical analysis and numerical experiments. the optimal solution [5]. Contrarily, the dual domain methods of-
Index Terms— Multi-agent network, decentralized optimiza- ‘€N Pring high computation burden. At each iteration, each agent
tion, linearized alternating direction method of multipliers needs to solve an optimization problem whose objective is the lo-
cal cost function plus a linear term in the dual ascent method [8] or
plus a quadratic term in the decentralized ADMM [9, 10]. At the
1. INTRODUCTION cost of high computation burden, the decentralized ADMM is able
to achieve fast convergence to the exact optimal solution; its rate
We consider a multi-agent system composed atworked agents Of convergence is linear when the local cost functions are strongly
whose goal is to solve a decentralized optimization problem with &onvex and have Lipschitz gradients [11].

separable cost of the form This paper develops the decentralized linearized alternating di-
rection method of multipliers (LADMM) that enjoys the advantages

min Z" () 1) of both the primal and dual methods, i.e., low computation burden

i=17"\" and fast convergence to the exact optimal solution; specifically, we

) ) ) establish its linear rate of convergence under the same assumptions

The variablez € RP is common to all agents that aim to solve g the local cost functions as in [5] and [11].
" :=argmin 331", fi(Z). The problem is decentralized because  The main idea of the decentralized LADMM is to linearize the
the objective is separated into local cost functighs: R — R |ocq| cost functions such that agents can obtain their local solutions
that are known to different agentsThe decentralized optimization {hrough simple algebraic operations and gradient descent steps. Nev-
problem (1) arise in various applications, such as event detectiogriheless, the decentralized LADMM is not a trivial application of
in wireless sensor networks [1], state estimation in smart grids [2line centralized LADMM. The existing centralized LADMM often
spectrum sensing in cognitive radio networks [3], etc. linearizes the augmented quadratic terms such that the subproblems

Algorithms that solve the decentralized optimization problemhaye explicit solutions, which is unsuitable in decentralized opti-
(1) fall into either the primal domain or the dual domain. In primal mization [12, 13]. Linearizing the original cost functions makes
domain methods, each agent averages its local solution with thosggorithm analysis intractable; in view of this difficulty, [14] intro-
of neighbors and descends along its local negative (sub)gradie@ices an extra gradient step after the linearization step. Due to the
direction. Typical primal domain methods include the distributedspecial structure of the decentralized optimization problem, this pa-

(sub)gradient method [4, 5, 6] and the dual averaging method [7}er is able to analyze the decentralized LADMM that directly lin-
Dual domain methods rewrite (1) to a constrained form where thearizes the original local cost functions.

constraints force local solutions to reach a global consensus. The
dual ascent method is hence applicable because (sub)gradients of the
dual function depend on local and neighboring solutions only and 2. ALGORITHM DEVELOPMENT
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can communicate tg. Assume the communication is bidirectional where the linearization parameiers a constant. In (4)V f(xz(k —
so that ife ~ (i,7) there exists another ak¢ ~ (j,i). Agents 1))"(z—=z(k—1))+2|lz—=z(k—1)||* is a quadratic approximation
adjacent toi is termed its neighbors and denoted as aMéget The  of f(z) at pointz(k — 1). Note that in the decentralized ADMM,
cardinality of this set is the degrek of agenti. Define the block arc  to updatex (k) the quadratic approximation term is replaced by the
source matrix4, € R™?*"? where the blockA;)e,; = I, € RP*? original cost functionf(x) [11]. Represent(k) as the solution of
is an identity matrix if the are ~ (3, j) originates at nodéand is  the first order optimality condition

null otherwise. Likewise, define the block arc destination matrix

Aq € R™X™ where the blocK Ag).; = I, € RP*? if the arc Vi(z(k = 1)) + pla(k) — z(k — 1)) ©)

e ~ (i,j) terminates at nodg and is null otherwise. The extended + ATA(k = 1) + cAT [Az(k) + Bz(k —1)] = 0.

oriented incidence matrix can be written A = A, — A4 and

the unoriented incidence matrix &, = As; + A4. The extended Using the value ofz(k) from (5) along with the previous dual
oriented (signed) Laplacian is then given By = (1/2)ETE,, iterate A\(k — 1) the primal iteratez(k) is defined asz(k) :=
the unoriented (unsigned) Laplacian by, = (1/2)ETE, and  argmin, Li(z(k), z, A\(k — 1)) and explicitly given by the solution

the degree matrix containing degreésin the diagonal isD = of the first order optimality condition
(1/2)(Lo+Lw). Denotel’, andy, as the largest and smallest eigen- . T
values ofLL.,, respectively, and’, as the smallest nonzero eigen- B Ak —1) +cB" [Az(k) + Bz(k)| = 0. (6)

value ofL; I'v, 7, andy, are measures of network connectednessThe dual iterate\(k) is then updated by the constraint violation

To develop the decentralized LADMM that solves (1), we intro- Ax(k) + Bz(k) corresponding to primal iteratesk) andz(k) in
duce variables:; € R” representing local copies of the variahie order to compute

auxiliary variablesz;; € RP associated with each at¢,j) € A,

and reformulate (1) as k) = Ak — 1) + c[Az(k) + Bz(k)]. (7)
min Zé fi(zi), ) Similar to the decentralized ADMM, with proper initialization
i=1 the decentralized LADMM iterates (5)-(7) can be simplified such
s.b. i = zij, T = 2y, forall (i, ) € A. that the auxiliary variable (k) is eliminated and the Lagrange mul-
) . . ] tipliersa € R™? andg € R™? is replaced by a smaller dimension
The constraints; = z;; andx; = z;; force neighboring agents vectorg = [é1;...;6n] € R™. The simplification technique is

and; to reach a consensus on their local copiesandz;. FOra  ayin 1o those used in decentralized implementations of the ADMM
connected network, (2) is equivalent to (1) in the sense that for all {5, static optimization problems; see e.g., [1], [9, Ch. 3], and [11].

and; the optimal solutions:; = " andz;; = " wherez" isthe  \ve omit the detailed derivation and give the following proposition.
optimal solution of (1).

Definex = [z1;...;x,] € R™ concatenating all local copies Proposition 1 Consider iterationg5)-(7). Require the initial mul-
z; andz = [z15...;2m] € R™” concatenating all auxiliary vari- tipliers A(0) = [«(0); 8(0)] to satisfya(0) = —/3(0), the initial
ablesz. = zi;, and let the aggregate functioh: R"” — R as  auxiliary variablesz(0) to be such thaf,z(0) = 2z(0) and fur-
f(z) == 31, fi(z:). Defining A = [Ag; Ag] € R*™*" and  ther define variables(k) := ETa(k) € R™. Then, for all times
B = [~Imp; —Imp|, we can rewrite (2) in a matrix form as k > 0, (k) can be alternatively generated by the recursion

min f(z), s.t. Az+ Bz=0, 3) (2¢D + pInp)x(k) — (cLy + plnp)z(k — 1) (8)

whereAz + Bz = 0 include two partsA;z —z = 0 andAgz — z = +Vi@k—1))+ ¢k —1) =0,

0. Consider Lagrange multipliers. = «;; associated with the ¢(k) = o(k — 1) + cLox (k). ©)
constraintse; = z;; and Lagrange multiplier§. = (;; associated
with the constraints; = z;;. Group the multipliersy. in the vector

a = [aq;...;am] € R™P and the multipliers3. in the vectors =
[B1;...; Bm] € R™P which are thus associated with the constraints
Asz — z = 0andAqx — z = 0, respectively. Defing = [«; 8] €
R?™P associated with the constraidt: + Bz = 0, the augmented

Lagrangian function of (3) is (2cd; + p)zi(k) = (cdi + p)zi(k — 1) (10)

The iterations in (8) and (9) can be implemented in a decen-
tralized manner. Consider the component of the updater &y
corresponding to the variabig (k). Using the definitions of the de-
gree matrixD and the unoriented Laplaciah, we can write this
component in (8) as

L(z,2,\) = f(z) + A" (Az + Bz) + gqu + Bz|?, + cheNi zj(k —1) = Vfi(zi(k — 1)) — ¢i(k — 1).

Likewise, using the definitions of the oriented Laplacianthe up-

wherec > 0 is a positive constant. X .
b date in (9) can be written as

At each iteration, the decentralized LADMM minimizes the aug-
mented Lagrangian function with respecttandz in an alternating N Oy
direction manner, where the minimization ofis inexact and the ¢i(k) = ¢i(k —1) + CZjGN,; [m’(k) i (k)]' (11
minimization of z is exact. Then the Lagrange multipligris up-
dated through dual ascent. At tirh@nd given past iterategk —1),
z(k — 1) andA(k — 1), the primal iterate:(k) is defined as

At the initialization stageg(0) is chosen in the column space bf
(e.9.,6(0) = 0). This is equivalent to choosing0) = [«(0); 8(0)]
such that bottw(0) and3(0) are in the column space @&,. Such
o . T p 2 an initialization is necessary for the analysis in Section 3. The de-
o(k) := argming Vf(z(k — 1))  + §”$ —z(k-DI" 4) centralized LADMM run by agentis summarized in Algorithm 1.
1T (Az + Ba(k — 1 N Ax + Ba(k — 112 The decentralized LADMM is advantageous over the decentral-
Ak = 1) (Az + Ba(k — 1)) + 2 14z + Bz(k = D, ized ADMM due to its low computation burden. The iterations (10)
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Algorithm 1 Decentralized LADMM at agent chosen such thaty, + p > 0 andmy(cy. + p)* > M7 /2. Under
Require: Initialize local variables ta:; (0) = 0, ¢;(0) = 0. Assumption 1, there exists a contraction paraméter 0 such that
Require: Initialize neighboring variables; (0) = 0 for all j € ;.
1: for timesk=1, 2, ...do
2:  Compute local solution; (k) from [cf. (10)] 2

1 . 1 .
< Slle(k—1) —z |I§1+E|\a(’€*1)*a 1.

l(k) = &7 + ——lla(k) — "

(14)

(2cdi + p)wi(k) = (cdi + p)wi(k — 1)

+ey o, Tk =1) = Vfi(zi(k = 1)) = ¢i(k — 1). Proof: With the initialization E,2(0) = 2z(0), reorganizing the
I iterations (5)-(7) we have
3:  Transmitz;(k) to and receive; (k) from neighborg € ;. -
4:  Update local dual variable; (k) as [cf. (11)] Vf(@(k—1)) + H(x(k) — z(k — 1)) + E; a(k) =0, (15)

5u(k) = Gulk— D+ ey (k) — (). 5 Eoz(k) = a(k) — a(k — 1), (16)

whereH := cL,, + pI,,. In (15) and (16) we have cancellecand
. Indeed (15) and (16) are equivalent to (8) and (9) noticing that
2D = Lo+ Ly, 2L, = ET E,, and the definitiomy (k) = EX a(k).
On the other hand, the KKT conditions of (3) are

and (11) only contain simple algebraic operations and gradient de- r

scent steps. As a comparison, the counterpart of (10) in the de- V(™) + E;a” =0, 7
centralized ADMM is the minimization of;(x;) augmented by a E.z* =0. (18)
quadratic term of; that is often nontrivial. In this sense the decen-

tralized LADMM is more close to a dual domain method. However, Subtracting (17) from (15) and (18) from (16) yield

the existing dual domain methods are unable to achieve fast con-

vergence and high accuracy simultaneously, while the decentralized Vf(z(k—1)) = Vf(x") (19)
LADMM converges at a linear rate to the optimal solution under = H(z(k — 1) — 2(k)) — EX (a(k) — o),

certain conditions, as we will analyze in Section 3.

JEN;

5: end for

gEo(a:(k) —z*) = a(k) — alk — 1). (20)

3. LINEAR RATE OF CONVERGENCE First, the strong convexity of implies that

This section establishes linear rate of convergence of the decentral- 2 T - *
ized LADMM. Throughout this section, we make the following as- my (k) = @7|" < [o(k) = 27] [VF(@(k)) = V@] (@1
sumption on the local cost functiorfs. = [x(k) — 2"]" [V f(2(k)) — Vf(z(k —1))]

*1T *
Assumption 1 Local cost functions are differentiable, strongly con- tle(k) =27 [VF(z(k —1)) = V@)

vex, and have Lipschitz gradients. For agetere e_xists p_osi~tive Substituting (19) into (21) and using (20), (21) can be rewritten as
constantsn; > 0 andM; > 0 such that for any pair of pointg,

andi, it holds [z, —yzi,]T[Vfi(;za)j V fi(@e)] > my |z — 2 mylw(k) — 2|2 22)
and||V fi(#a) — V fi(@)]| < Myl|Za — &]. o

< fz(k) =27 [Vf(x(k) = VI(z(k - 1))]
Assumption 1 implies thaf (z) := > I, fi(x:) is also strongly 1 wna 1 wa 1 5
convex and has Lipschitz gradients. For any pair of paigtandz;, T 5“"”““ —1) =2k~ §Hx(k) = - 5”33(1‘7) —z(k=1[H
it holds

+ Lk~ 1)~ a* | = (k) - o” [ - ~Jla(k) - alk — ).

T
(2o — @] [Vf(za) = VI(s)] > mslza — ], (12) , .
Next, we prove that there exists a contraction parameter

and
2
IV f(@a) = V15 (@)l < My|lwa — . (13) . my— 8 lento)® _ 24 0. @3
Next we investigate the convergence of the primal itergte) Y Crae? L M, (Tatp? | #ME -0

and the dual iterate(k) to their optima. Under the assumption of 2 o mml 2¢% o
strong convexity, the optimal primal solutiati = [£*;--- ;Z"]iS  gych that it holds
unique sincez™ is the unique optimal solution of (1). There ex-
ist multiple optimal dual solutions; however, we consider a unique my|z(k) — z*||* + 1||1:(k) — 2k - 1% (24)
optimal dual solutiom\* = [a*; %] wherea™ = —j~ lies in the 2
column space ofY,. Existence and uniqueness of suchcgnare — [z(k) — x*]T [Vf(z(k)) — Vf(z(k—1))]

proved in [11].
> Jlo(h) — o % + Llla(h) — " .

Lemma 1 Consider the iterate¢5)-(7). Let the Lagrange multi-

plier A(k) = [a(k); B(k)] be initialized bya(0) = —3(0) where  In (23), u is an arbitrary constant satisfying > 1 and¢ is an ar-
(0) lies in the column space @, and the primal variables be ini-  bitrary constant satisfyingm; > 6 > M7 /(cy. + p)?; such af
tialized by E,z(0) = 22(0). Let the linearization parameter be  exists since by hypothesis (cvy. + p)* > M7 /2.
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To prove (22), we find lower bounds for left-hand side terms
and upper bounds for right-hand side terms. S¥ggis Lipschitz
continuous, for any: > 1 we have

Mfla(k = 1) —a"|* > |V f(2(k — 1)) = Vf(z")|*
= ||H(z(k — 1) — 2(k)) — Eq (a(k) —a")||*

(25)

|2

1 T * 2 1
2 1B (alk) = af)I" = = [|H (@(k = 1) = 2(k))

Since the largest eigenvalue Hfis cI',, + p so we havé|H (z(k —

1) —z(k)||? < (cI'u + p)?||(x(k — 1) — z(k))||?; also, since both
a(k) anda” lie in the column space df, and the smallest nonzero
eigenvalue of., = (ET E°)/2is~, itholds||EX (a(k) — a*)||? >
27, |la(k) — *||?. Using these inequalities (25) leads to

0

2 2
S0y, Mi llz(k = 1) =27 (26)
5 p(clu +p)° .5 .
6 p(cCu+p)? X e
27,  p—1 lz(k = 1) =z (k)" = _lla(k) — a7

Again from the Lipschitz continuity oV f for any6 > 0
— [a(k) — 2"]" [V f(x(k)) = V f(x(k - 1))]
(k) —a™||* - %I\Vf(m(k)) — Vf((k - 1)

(27)

0 *112 1 2 2
2 = 5llz(k) —27|I" = 55 My lla(k) — x(k — 1)|I°.

Since the largest and smallest eigenvaluegioére cI",, + p and
¢yu + p (Which is positive by hypothesis), respectively; (k) —
w(k =D} > (et p)?llz(k) —z(k—1)|* and|lz(k) —z*[|% <
(cT'y + p)? ||z (k) — =*||*. Combining these two inequalities as well
as (26) and (27), the sufficient condition of (24) is

0  6(clu +p)? .
(s = § = 2P oty -7+ (28)
Yo + p)? 1 1) 'y +p)?
({2l Gyt - 2 M o) — o 1)
6 2 * 12
> % M —1) -
> o et - 1) -7

which is true for the contraction paramet&r> 0 in (23) since
le(k —1) = a*|* < 2]la(k) — 2" ||* + 2|z (k) — 2(k - 1)]1*.
Combining (22) and (24) yields (14) and completes the prabf.

Lemma 1 demonstrates thglz(k) — z* || + L |la(k) — o ||
decreases by a factor of at ledgt(1 + §) from its previous value.
Whens > 0, Lemma 1 indicates Q-linear convergenceldfi (k) —
z*||% + %[|e(k) — a*||* to 0. Noticing thatf is positive definite as
cyu + p > 0, Lemma 1 implies R-linear convergenceadf) to =*
sincel||z(k) — «* % < Sl|z(k) — 2|3 + Llla(k) — || The
result is given in the following theorem.

Theorem 1 Under the assumptions in Lemma 1, the primal solu-
tion z(k) generated by the iteratg5)-(7) linearly converges to the
unique optimal solution:™.

The contraction parametéris determined by",, (the largest
eigenvalue of the unoriented Laplacian), .. (the smallest eigen-
value of the unoriented Laplaciah,), v, (the smallest nonzero
eigenvalue of the oriented Laplacidn), My (the Lipschitz con-
stant of V f), my (the strong convexity constant @), ¢ andp (the
decentralized LADMM parameters), as welltsandy (the two arbi-
trary constants satisfyigmny > 6 > M7 /(cyu + p)* andp > 1).
Larger contraction parameter means faster convergence.
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4. NUMERICAL EXPERIMENTS

Consider a bidirectionally connected network composed of 100
agents wheren = 752 arcs out of 9900 possible arcs are randomly
chosen to be connected. Agenieasures a true signaf € R®
throughy; = U;#°+e;; here elements af; € R° follow zero-mean
Gaussian distribution with standard deviation 0.1, elements; af
R>*5 follow zero-mean Gaussian distribution with standard devia-
tion 1, andU; U is positive definite. To run least squares regression,
the local cost function of agewnts f; (%) = ||U:E° — vi||?/2.

Fig. 1 compares three decentralized algorithms: the decentral-
ized LADMM, the decentralized ADMM, and the distributed gra-
dient method (DGM). The decentralized LADMM adopts the iter-
ations (10) and (11) where (10) reduces to simple algebraic opera-
tions. The decentralized ADMM is similar to that of the decentral-
ized ADMM except that the iteration (10) is to minimize a quadratic
function. The DGM updates ageis local solution through:; (k) =
> jensui Wisi(k — 1) — e(k)V fi(zi(k — 1)) wheree(k) is the
stepsize andV = [w;;] € R™*" is a weight matrix chosen with
the maximum-degree rule [15]. The performance metric is average
squared error defined &, ||lz:(k) — 2| /n.

The decentralized ADMM uses= 1.2 that achieves the fastest
convergence. The decentralized LADMM keeps= 1.2 and uses
different linearization parameteps Whenp = 8, the decentralized
LADMM converges to the optimal solution within 300 iterations
that are comparable with 200 iterations needed by the decentralized
ADMM. At the cost of slightly slower convergence, the decentral-
ized LADMM is much easier to implement than its non-linearized
counterpart due to its simple computations. The algorithm diverges
whenp is too small and converges slowly wheris too large, as
Lemma 1 shows. The DGM can converge at a linear rate if the
stepsize is fixed, but the solution is different than the optimal solu-
tion. Using a time-varying stepsize sucheég) = ¢(0)/k the DGM
guarantees convergence to the optimal soluté¢h) = 0.2 is set to
achieve the fastest convergence. However, the convergence is slow
according to both theoretical analysis and numerical experiments.

PrEETTiEE i3I TR AT

~A-ADMM, c=12

—e—LADMM, c =12, p=8

| —e—LADMM, c=12p=10
$] —8— LADMM, ¢ =12, p =12

N % DGM, (k) = 0.01

4. DGM, e(k) = 0.2/k
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k
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Fig. 1. Comparison of the three decentralized algorithms.

5. CONCLUSION

In this paper we develop the decentralized LADMM that modifies
the decentralized ADMM through linearizing the local cost func-
tions and reducing its computation burden. Its computation is similar
to that of decentralized gradient descent but significantly improves
the convergence properties. In summary, the decentralized LADMM
bridges the gap between the primal domain and dual domain meth-
ods and takes advantages of the both.
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