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ABSTRACT

This paper develops a decentralized linearized alternating direction
method of multipliers (LADMM) that minimizes the sum of local
cost functions in a multi-agent network. Through linearizing the lo-
cal cost functions agents can obtain their local solutions with simple
algebraic operations and gradient descent steps. We prove that the
algorithm linearly converges to the optimal solution given that the
local cost functions are strongly convex and have Lipschitz gradi-
ents. The decentralized LADMM has similar computations as the
distributed (sub)gradient method but outperforms the latter, which
is unable to achieve linear rate of convergence and convergence to
the exact optimal solution simultaneously. Compared to its non-
linearized counterpart that suffers from high computation burden,
the decentralized LADMM has a comparable rate of convergence
according to both theoretical analysis and numerical experiments.

Index Terms— Multi-agent network, decentralized optimiza-
tion, linearized alternating direction method of multipliers

1. INTRODUCTION

We consider a multi-agent system composed ofn networked agents
whose goal is to solve a decentralized optimization problem with a
separable cost of the form

min
∑n

i=1
fi(x̃). (1)

The variablex̃ ∈ Rp is common to all agents that aim to solve
x̃∗ := argmin

∑n
i=1 fi(x̃). The problem is decentralized because

the objective is separated into local cost functionsfi : Rp → R
that are known to different agentsi. The decentralized optimization
problem (1) arise in various applications, such as event detection
in wireless sensor networks [1], state estimation in smart grids [2],
spectrum sensing in cognitive radio networks [3], etc.

Algorithms that solve the decentralized optimization problem
(1) fall into either the primal domain or the dual domain. In primal
domain methods, each agent averages its local solution with those
of neighbors and descends along its local negative (sub)gradient
direction. Typical primal domain methods include the distributed
(sub)gradient method [4, 5, 6] and the dual averaging method [7].
Dual domain methods rewrite (1) to a constrained form where the
constraints force local solutions to reach a global consensus. The
dual ascent method is hence applicable because (sub)gradients of the
dual function depend on local and neighboring solutions only and
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can thereby be computed without global cooperation [8]. The decen-
tralized alternating direction method of multipliers (ADMM) mod-
ifies dual ascent by introducing a quadratic regularization term and
improves its numerical stability and rate of convergence [9, 10, 11].

The main advantage of the primal domain methods is their low
computation burden. The average and (sub)gradient descent opera-
tions are simple and hence affordable to those agents having limited
computation abilities. However, the existing primal domain meth-
ods suffer from either slow convergence or low accuracy. With time-
varying stepsizes, the distributed (sub)gradient method and the dual
averaging method converge to the optimal solution at sublinear rates
[6, 7]. If the stepsize is constant, the distributed gradient method
is able to achieve a linear rate of convergence under the assumption
that the local cost functions are strongly convex and have Lipschitz
gradients; however, the algorithm converges to a neighborhood of
the optimal solution [5]. Contrarily, the dual domain methods of-
ten bring high computation burden. At each iteration, each agent
needs to solve an optimization problem whose objective is the lo-
cal cost function plus a linear term in the dual ascent method [8] or
plus a quadratic term in the decentralized ADMM [9, 10]. At the
cost of high computation burden, the decentralized ADMM is able
to achieve fast convergence to the exact optimal solution; its rate
of convergence is linear when the local cost functions are strongly
convex and have Lipschitz gradients [11].

This paper develops the decentralized linearized alternating di-
rection method of multipliers (LADMM) that enjoys the advantages
of both the primal and dual methods, i.e., low computation burden
and fast convergence to the exact optimal solution; specifically, we
establish its linear rate of convergence under the same assumptions
on the local cost functions as in [5] and [11].

The main idea of the decentralized LADMM is to linearize the
local cost functions such that agents can obtain their local solutions
through simple algebraic operations and gradient descent steps. Nev-
ertheless, the decentralized LADMM is not a trivial application of
the centralized LADMM. The existing centralized LADMM often
linearizes the augmented quadratic terms such that the subproblems
have explicit solutions, which is unsuitable in decentralized opti-
mization [12, 13]. Linearizing the original cost functions makes
algorithm analysis intractable; in view of this difficulty, [14] intro-
duces an extra gradient step after the linearization step. Due to the
special structure of the decentralized optimization problem, this pa-
per is able to analyze the decentralized LADMM that directly lin-
earizes the original local cost functions.

2. ALGORITHM DEVELOPMENT

Consider a connected network composed of a set ofn agentsV =
{1, . . . , n} and a set ofm arcsA = {1, . . . , m}, where each arc
e ∼ (i, j) is associated with an ordered pair(i, j) indicating thati
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can communicate toj. Assume the communication is bidirectional
so that if e ∼ (i, j) there exists another arce′ ∼ (j, i). Agents
adjacent toi is termed its neighbors and denoted as a setNi. The
cardinality of this set is the degreedi of agenti. Define the block arc
source matrixAs ∈ Rmp×np where the block(As)e,i = Ip ∈ Rp×p

is an identity matrix if the arce ∼ (i, j) originates at nodei and is
null otherwise. Likewise, define the block arc destination matrix
Ad ∈ Rmp×np where the block(Ad)e,j = Ip ∈ Rp×p if the arc
e ∼ (i, j) terminates at nodej and is null otherwise. The extended
oriented incidence matrix can be written asEo = As − Ad and
the unoriented incidence matrix asEu = As + Ad. The extended
oriented (signed) Laplacian is then given byLo = (1/2)ET

o Eo,
the unoriented (unsigned) Laplacian byLu = (1/2)ET

u Eu and
the degree matrix containing degreesdi in the diagonal isD =
(1/2)(Lo+Lu). DenoteΓu andγu as the largest and smallest eigen-
values ofLu, respectively, andΓu as the smallest nonzero eigen-
value ofLo; Γu, γu, andγo are measures of network connectedness.

To develop the decentralized LADMM that solves (1), we intro-
duce variablesxi ∈ Rp representing local copies of the variablex̃,
auxiliary variableszij ∈ Rp associated with each arc(i, j) ∈ A,
and reformulate (1) as

min
∑n

i=1
fi(xi), (2)

s. t. xi = zij , xj = zij , for all (i, j) ∈ A.

The constraintsxi = zij andxj = zij force neighboring agentsi
andj to reach a consensus on their local copiesxi andxj . For a
connected network, (2) is equivalent to (1) in the sense that for alli
andj the optimal solutionsxi = x̃∗ andzij = x̃∗ wherex̃∗ is the
optimal solution of (1).

Definex = [x1; . . . ; xn] ∈ Rnp concatenating all local copies
xi andz = [z1; . . . ; zm] ∈ Rmp concatenating all auxiliary vari-
ablesze = zij , and let the aggregate functionf : Rnp → R as
f(x) :=

∑n
i=1 fi(xi). DefiningA = [As; Ad] ∈ R2mp×np and

B = [−Imp;−Imp], we can rewrite (2) in a matrix form as

min f(x), s. t. Ax + Bz = 0, (3)

whereAx+Bz = 0 include two partsAsx−z = 0 andAdx−z =
0. Consider Lagrange multipliersαe = αij associated with the
constraintsxi = zij and Lagrange multipliersβe = βij associated
with the constraintsxj = zij . Group the multipliersαe in the vector
α = [α1; . . . ; αm] ∈ Rmp and the multipliersβe in the vectorβ =
[β1; . . . ; βm] ∈ Rmp which are thus associated with the constraints
Asx− z = 0 andAdx− z = 0, respectively. Defineλ = [α; β] ∈
R2mp associated with the constraintAx + Bz = 0, the augmented
Lagrangian function of (3) is

L(x, z, λ) = f(x) + λT (Ax + Bz) +
c

2
‖Ax + Bz‖2,

wherec > 0 is a positive constant.
At each iteration, the decentralized LADMM minimizes the aug-

mented Lagrangian function with respect tox andz in an alternating
direction manner, where the minimization ofx is inexact and the
minimization ofz is exact. Then the Lagrange multiplierλ is up-
dated through dual ascent. At timek and given past iteratesx(k−1),
z(k − 1) andλ(k − 1), the primal iteratex(k) is defined as

x(k) := arg minx∇f(x(k − 1))T x +
ρ

2
‖x− x(k − 1)‖2 (4)

+ λ(k − 1)T (Ax + Bz(k − 1)) +
c

2
‖Ax + Bz(k − 1)‖2,

where the linearization parameterρ is a constant. In (4),∇f(x(k −
1))T (x−x(k−1))+ ρ

2
‖x−x(k−1)‖2 is a quadratic approximation

of f(x) at pointx(k − 1). Note that in the decentralized ADMM,
to updatex(k) the quadratic approximation term is replaced by the
original cost functionf(x) [11]. Representx(k) as the solution of
the first order optimality condition

∇f(x(k − 1)) + ρ(x(k)− x(k − 1)) (5)

+ AT λ(k − 1) + cAT [
Ax(k) + Bz(k − 1)

]
= 0.

Using the value ofx(k) from (5) along with the previous dual
iterate λ(k − 1) the primal iteratez(k) is defined asz(k) :=
argminz Lk(x(k), z, λ(k − 1)) and explicitly given by the solution
of the first order optimality condition

BT λ(k − 1) + cBT [
Ax(k) + Bz(k)

]
= 0. (6)

The dual iterateλ(k) is then updated by the constraint violation
Ax(k) + Bz(k) corresponding to primal iteratesx(k) andz(k) in
order to compute

λ(k) = λ(k − 1) + c
[
Ax(k) + Bz(k)

]
. (7)

Similar to the decentralized ADMM, with proper initialization
the decentralized LADMM iterates (5)-(7) can be simplified such
that the auxiliary variablez(k) is eliminated and the Lagrange mul-
tipliers α ∈ Rmp andβ ∈ Rmp is replaced by a smaller dimension
vectorφ = [φ1; . . . ; φn] ∈ Rnp. The simplification technique is
akin to those used in decentralized implementations of the ADMM
for static optimization problems; see e.g., [1], [9, Ch. 3], and [11].
We omit the detailed derivation and give the following proposition.

Proposition 1 Consider iterations(5)-(7). Require the initial mul-
tipliers λ(0) = [α(0); β(0)] to satisfyα(0) = −β(0), the initial
auxiliary variablesz(0) to be such thatEox(0) = 2z(0) and fur-
ther define variablesφ(k) := ET

o α(k) ∈ Rnp. Then, for all times
k > 0, x(k) can be alternatively generated by the recursion

(2cD + ρInp)x(k)− (cLu + ρInp)x(k − 1) (8)

+∇f(x(k − 1)) + φ(k − 1) = 0,

φ(k) = φ(k − 1) + cLox(k). (9)

The iterations in (8) and (9) can be implemented in a decen-
tralized manner. Consider the component of the update forx(k)
corresponding to the variablexi(k). Using the definitions of the de-
gree matrixD and the unoriented LaplacianLu we can write this
component in (8) as

(2cdi + ρ)xi(k) = (cdi + ρ)xi(k − 1) (10)

+ c
∑

j∈Ni

xj(k − 1)−∇fi(xi(k − 1))− φi(k − 1).

Likewise, using the definitions of the oriented LaplacianLo the up-
date in (9) can be written as

φi(k) = φi(k − 1) + c
∑

j∈Ni

[
xi(k)− xj(k)

]
. (11)

At the initialization stage,φ(0) is chosen in the column space ofLo

(e.g.,φ(0) = 0). This is equivalent to choosingλ(0) = [α(0); β(0)]
such that bothα(0) andβ(0) are in the column space ofEo. Such
an initialization is necessary for the analysis in Section 3. The de-
centralized LADMM run by agenti is summarized in Algorithm 1.

The decentralized LADMM is advantageous over the decentral-
ized ADMM due to its low computation burden. The iterations (10)

5485



Algorithm 1 Decentralized LADMM at agenti

Require: Initialize local variables toxi(0) = 0, φi(0) = 0.
Require: Initialize neighboring variablesxj(0) = 0 for all j ∈ Ni.

1: for times k = 1, 2, . . .do
2: Compute local solutionxi(k) from [cf. (10)]

(2cdi + ρ)xi(k) = (cdi + ρ)xi(k − 1)

+ c
∑

j∈Ni

xj(k − 1)−∇fi(xi(k − 1))− φi(k − 1).

3: Transmitxi(k) to and receivexj(k) from neighborsj ∈ Ni.
4: Update local dual variableφi(k) as [cf. (11)]

φi(k) = φi(k − 1) + c
∑

j∈Ni

[
xi(k)− xj(k)

]
.

5: end for

and (11) only contain simple algebraic operations and gradient de-
scent steps. As a comparison, the counterpart of (10) in the de-
centralized ADMM is the minimization offi(xi) augmented by a
quadratic term ofxi that is often nontrivial. In this sense the decen-
tralized LADMM is more close to a dual domain method. However,
the existing dual domain methods are unable to achieve fast con-
vergence and high accuracy simultaneously, while the decentralized
LADMM converges at a linear rate to the optimal solution under
certain conditions, as we will analyze in Section 3.

3. LINEAR RATE OF CONVERGENCE

This section establishes linear rate of convergence of the decentral-
ized LADMM. Throughout this section, we make the following as-
sumption on the local cost functionsfi.

Assumption 1 Local cost functions are differentiable, strongly con-
vex, and have Lipschitz gradients. For agenti there exists positive
constantsmf > 0 andMf > 0 such that for any pair of points̃xa

andx̃b it holds[x̃a − x̃b]
T [∇fi(x̃a)−∇fi(x̃b)] ≥ mf‖x̃a − x̃b‖2

and‖∇fi(x̃a)−∇fi(x̃b)‖ ≤ Mf‖x̃a − x̃b‖.

Assumption 1 implies thatf(x) :=
∑n

i=1 fi(xi) is also strongly
convex and has Lipschitz gradients. For any pair of pointsxa andxb

it holds

[
xa − xb

]T [∇f(xa)−∇f(xb)
] ≥ mf‖xa − xb‖2, (12)

and
‖∇f(xa)−∇fk(xb)‖ ≤ Mf‖xa − xb‖. (13)

Next we investigate the convergence of the primal iteratex(k)
and the dual iterateα(k) to their optima. Under the assumption of
strong convexity, the optimal primal solutionx∗ = [x̃∗; · · · ; x̃∗] is
unique sincẽx∗ is the unique optimal solution of (1). There ex-
ist multiple optimal dual solutions; however, we consider a unique
optimal dual solutionλ∗ = [α∗; β∗] whereα∗ = −β∗ lies in the
column space ofEo. Existence and uniqueness of such anα∗ are
proved in [11].

Lemma 1 Consider the iterates(5)-(7). Let the Lagrange multi-
plier λ(k) = [α(k); β(k)] be initialized byα(0) = −β(0) where
α(0) lies in the column space ofEo and the primal variables be ini-
tialized byEox(0) = 2z(0). Let the linearization parameterρ be

chosen such thatcγu + ρ > 0 andmf (cγu + ρ)2 > M2
f /2. Under

Assumption 1, there exists a contraction parameterδ > 0 such that

1 + δ

2
‖x(k)− x∗‖2H +

1 + δ

c
‖α(k)− α∗‖2 (14)

≤ 1

2
‖x(k − 1)− x∗‖2H +

1

c
‖α(k − 1)− α∗‖2.

Proof: With the initializationEox(0) = 2z(0), reorganizing the
iterations (5)-(7) we have

∇f(x(k − 1)) + H(x(k)− x(k − 1)) + ET
o α(k) = 0, (15)

c

2
Eox(k) = α(k)− α(k − 1), (16)

whereH := cLu + ρInp. In (15) and (16) we have cancelledz and
β. Indeed (15) and (16) are equivalent to (8) and (9) noticing that
2D = Lo +Lu, 2Lo = ET

o Eo, and the definitionφ(k) = ET
o α(k).

On the other hand, the KKT conditions of (3) are

∇f(x∗) + ET
o α∗ = 0, (17)

Eox
∗ = 0. (18)

Subtracting (17) from (15) and (18) from (16) yield

∇f(x(k − 1))−∇f(x∗) (19)

= H(x(k − 1)− x(k))− ET
o (α(k)− α∗),

c

2
Eo(x(k)− x∗) = α(k)− α(k − 1). (20)

First, the strong convexity off implies that

mf‖x(k)− x∗‖2 ≤ [x(k)− x∗]T [∇f(x(k))−∇f(x∗)] (21)

= [x(k)− x∗]T [∇f(x(k))−∇f(x(k − 1))]

+ [x(k)− x∗]T [∇f(x(k − 1))−∇f(x∗)] .

Substituting (19) into (21) and using (20), (21) can be rewritten as

mf‖x(k)− x∗‖2 (22)

≤ [x(k)− x∗]T [∇f(x(k))−∇f(x(k − 1))]

+
1

2
‖x(k − 1)− x∗‖2H − 1

2
‖x(k)− x∗‖2H − 1

2
‖x(k)− x(k − 1)‖2H

+
1

c
‖α(k − 1)− α∗‖2 − 1

c
‖α(k)− α∗‖2 − 1

c
‖α(k)− α(k − 1)‖2.

Next, we prove that there exists a contraction parameter

δ = min





mf − θ
2

(cΓu+ρ)2

2
+

µM2
f

cγo

,
(cγu+ρ)2

2
− M2

f

2θ

µ
µ−1

(cΓu+ρ)2

2cγo
+

µM2
f

cγo



 > 0, (23)

such that it holds

mf‖x(k)− x∗‖2 +
1

2
‖x(k)− x(k − 1)‖2H (24)

− [x(k)− x∗]T [∇f(x(k))−∇f(x(k − 1))]

≥ δ

2
‖x(k)− x∗‖2H +

δ

c
‖α(k)− α∗‖2.

In (23), µ is an arbitrary constant satisfyingµ > 1 andθ is an ar-
bitrary constant satisfying2mf > θ > M2

f /(cγu + ρ)2; such aθ
exists since by hypothesismf (cγu + ρ)2 > M2

f /2.
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To prove (22), we find lower bounds for left-hand side terms
and upper bounds for right-hand side terms. Since∇f is Lipschitz
continuous, for anyµ > 1 we have

M2
f ‖x(k − 1)− x∗‖2 ≥ ‖∇f(x(k − 1))−∇f(x∗)‖2 (25)

= ‖H(x(k − 1)− x(k))− ET
o (α(k)− α∗)‖2

≥ 1

µ
‖ET

o (α(k)− α∗)‖2 − 1

µ− 1
‖H(x(k − 1)− x(k))‖2.

Since the largest eigenvalue ofH is cΓu + ρ so we have‖H(x(k −
1)− x(k))‖2 ≤ (cΓu + ρ)2‖(x(k− 1)− x(k))‖2; also, since both
α(k) andα∗ lie in the column space ofEo and the smallest nonzero
eigenvalue ofLo = (ET

o Eo)/2 is γo it holds‖ET
o (α(k)−α∗)‖2 ≥

2γo‖α(k)− α∗‖2. Using these inequalities (25) leads to

δ

2cγo
µM2

f ‖x(k − 1)− x∗‖2 (26)

+
δ

2cγo

µ(cΓu + ρ)2

µ− 1
‖x(k − 1)− x(k)‖2 ≥ δ

c
‖α(k)− α∗‖2.

Again from the Lipschitz continuity of∇f for anyθ > 0

− [x(k)− x∗]T [∇f(x(k))−∇f(x(k − 1))] (27)

≥− θ

2
‖x(k)− x∗‖2 − 1

2θ
‖∇f(x(k))−∇f(x(k − 1))‖2

≥− θ

2
‖x(k)− x∗‖2 − 1

2θ
M2

f ‖x(k)− x(k − 1)‖2.
Since the largest and smallest eigenvalues ofH are cΓu + ρ and
cγu + ρ (which is positive by hypothesis), respectively,‖x(k) −
x(k−1)‖2H ≥ (cγu +ρ)2‖x(k)−x(k−1)‖2 and‖x(k)−x∗‖2H ≤
(cΓu + ρ)2‖x(k)− x∗‖2. Combining these two inequalities as well
as (26) and (27), the sufficient condition of (24) is
(

mf − θ

2
− δ(cΓu + ρ)2

2

)
‖x(k)− x∗‖2+ (28)

(
(cγu + ρ)2

2
− 1

2θ
M2

f − δ

2cγo

µ(cΓu + ρ)2

µ− 1

)
‖x(k)− x(k − 1)‖2

≥ δ

2cγo
µM2

f ‖x(k − 1)− x∗‖2,

which is true for the contraction parameterδ > 0 in (23) since
‖x(k − 1)− x∗‖2 ≤ 2‖x(k)− x∗‖2 + 2‖x(k)− x(k − 1)‖2.

Combining (22) and (24) yields (14) and completes the proof.¤

Lemma 1 demonstrates that1
2
‖x(k)−x∗‖2H + 1

c
‖α(k)−α∗‖2

decreases by a factor of at least1/(1 + δ) from its previous value.
Whenδ > 0, Lemma 1 indicates Q-linear convergence of1

2
‖x(k)−

x∗‖2H + 1
c
‖α(k)−α∗‖2 to 0. Noticing thatH is positive definite as

cγu + ρ > 0, Lemma 1 implies R-linear convergence ofx(k) to x∗

since1
2
‖x(k)− x∗‖2H ≤ 1

2
‖x(k)− x∗‖2H + 1

c
‖α(k)− α∗‖2. The

result is given in the following theorem.

Theorem 1 Under the assumptions in Lemma 1, the primal solu-
tion x(k) generated by the iterates(5)-(7) linearly converges to the
unique optimal solutionx∗.

The contraction parameterδ is determined byΓu (the largest
eigenvalue of the unoriented LaplacianLu), γu (the smallest eigen-
value of the unoriented LaplacianLu), γo (the smallest nonzero
eigenvalue of the oriented LaplacianLo), Mf (the Lipschitz con-
stant of∇f ), mf (the strong convexity constant off ), c andρ (the
decentralized LADMM parameters), as well asθ andµ (the two arbi-
trary constants satisfying2mf > θ > M2

f /(cγu + ρ)2 andµ > 1).
Larger contraction parameter means faster convergence.

4. NUMERICAL EXPERIMENTS

Consider a bidirectionally connected network composed ofn = 100
agents wherem = 752 arcs out of 9900 possible arcs are randomly
chosen to be connected. Agenti measures a true signalx̃o ∈ R5

throughyi = Uix̃
o+ei; here elements ofei ∈ R5 follow zero-mean

Gaussian distribution with standard deviation 0.1, elements ofUi ∈
R5×5 follow zero-mean Gaussian distribution with standard devia-
tion 1, andUT

i Ui is positive definite. To run least squares regression,
the local cost function of agenti is fi(x̃) = ‖Uix̃

o − yi‖2/2.
Fig. 1 compares three decentralized algorithms: the decentral-

ized LADMM, the decentralized ADMM, and the distributed gra-
dient method (DGM). The decentralized LADMM adopts the iter-
ations (10) and (11) where (10) reduces to simple algebraic opera-
tions. The decentralized ADMM is similar to that of the decentral-
ized ADMM except that the iteration (10) is to minimize a quadratic
function. The DGM updates agenti’s local solution throughxi(k) =∑

j∈Ni∪i wijxj(k − 1) − ε(k)∇fi(xi(k − 1)) whereε(k) is the

stepsize andW = [wij ] ∈ Rn×n is a weight matrix chosen with
the maximum-degree rule [15]. The performance metric is average
squared error defined as

∑n
i=1 ‖xi(k)− x̃∗‖2/n.

The decentralized ADMM usesc = 1.2 that achieves the fastest
convergence. The decentralized LADMM keepsc = 1.2 and uses
different linearization parametersρ. Whenρ = 8, the decentralized
LADMM converges to the optimal solution within 300 iterations
that are comparable with 200 iterations needed by the decentralized
ADMM. At the cost of slightly slower convergence, the decentral-
ized LADMM is much easier to implement than its non-linearized
counterpart due to its simple computations. The algorithm diverges
whenρ is too small and converges slowly whenρ is too large, as
Lemma 1 shows. The DGM can converge at a linear rate if the
stepsize is fixed, but the solution is different than the optimal solu-
tion. Using a time-varying stepsize such asε(k) = ε(0)/k the DGM
guarantees convergence to the optimal solution;ε(0) = 0.2 is set to
achieve the fastest convergence. However, the convergence is slow
according to both theoretical analysis and numerical experiments.
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DGM, ε(k) = 0.01

DGM, ε(k) = 0.2/k

Fig. 1. Comparison of the three decentralized algorithms.

5. CONCLUSION

In this paper we develop the decentralized LADMM that modifies
the decentralized ADMM through linearizing the local cost func-
tions and reducing its computation burden. Its computation is similar
to that of decentralized gradient descent but significantly improves
the convergence properties. In summary, the decentralized LADMM
bridges the gap between the primal domain and dual domain meth-
ods and takes advantages of the both.
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