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ABSTRACT

Average consensus is a well-studied method for distributed averag-

ing. The convergence properties of average consensus depend on the

averaging weights. Examples for commonly used weight designs are

Metropolis-Hastings (MH) weights and constant weights. In this pa-

per, we provide a complete convergence analysis for a generalized

MH weight design that encompasses conventional MH as special

case. More specifically, we formulate sufficient and necessary con-

ditions for convergence. A main conclusion is that AC with MH

weights is guaranteed to converge unless the underlying network is

a regular bipartite graph.

Index Terms— Average consensus, wireless sensor networks,

distributed algorithms

1. INTRODUCTION

Wireless sensor networks (WSN) have attracted enormous interest

over the past decade, with applications ranging from environmental

monitoring to distributed localization and tracking (see, e.g., [1]).

Distributed algorithms are particularly important tools in this con-

text. Distributed averaging is one of the most fundamental meth-

ods; here, the goal is that all nodes compute in a distributed manner

the arithmetic mean of a collection of numbers (typically the sen-

sor measurements). distributed manner such that it is then available

at all nodes. Overviews of existing iterative averaging algorithms

problem are given in [2–4]. One of these algorithms is referred to as

average consensus (AC) and was originally proposed in [5].

It is known that the convergence of AC is determined by the

graph topology and by the underlying weight design. Latter has been

topic of considerable research, e.g. [6] and [7] optimize the per-step

convergence speed, where the second one takes the statistics of the

measurements into account. Metropolis-Hastings (MH) weight de-

sign [8–10] is a particularly popular approach. There are two vari-

ants of MH that differ in their convergence properties [10–12]. Ac-

cording to [10, 13], convergence is guaranteed as long as the under-

lying communication graph is connected ”in the long term”. This

condition is essential for AC in mobile WSN [14].

In this paper, we introduce a generalized MH (GMH) design for

undirected graphs that comprises the two conventional variants as

special cases. Based on GMH, we provide a unifying convergence

analysis in terms of necessary and sufficient convergence conditions.

We show that convergence is guaranteed unless the underlying com-

munication graph is regular and bipartite. Numerical results illus-

trate our theoretical findings.
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2. GRAPH THEORY BACKGROUND

We consider a network of I agents that is modeled by an undi-

rected graph G = (V, E); here, V is the node (vertex) set (i.e.,

the set of agents) and E ⊂ V × V is the set of undirected edges

(the communication links between agents). For simplicity we as-

sume V = {1, . . . , I} in what follows. Furthermore, we will use

an enumeration of the edge set (the edge index is denoted by l).
The I × I adjacency matrix A characterizes the graph topology.

It is defined as [A]ij = 1 if (i, j) ∈ E and [A]ij = 0 otherwise.

The neighbor set Ni of node i is the set of all nodes that form an

edge with node i. The degree di of node i equals the number of

its neighbors; formally, di =
∑I

j=1[A]ij or, in vector notation,

d = A1, where 1 is the all-ones vector. We denote the largest

degree by dmax = maxi di. A graph is called d-regular if all nodes

have the same number d of neighbors, i.e., d = d1. The I × |E|
incidence matrix B describes the relation of nodes and edges; as-

suming that the lth edge consists of nodes i and j, [B]il = 1 and

[B]jl =−1, i.e., in each column one entry equals plus one, one en-

try equals minus one, and all other entries are zero. Another matrix

which is used to characterize graphs is the Laplacian, which is given

by L = BB
T = diag{d}−A; here, diag{d} is the diagonal ma-

trix whose diagonal is given by the node degree vector d. A graph

is called connected if there exists a path (i.e., a sequence of edges)

between any two nodes, which is the case if and only if the Lapla-

cian has no more than one eigenvalue that equals zero. A graph is

termed bipartite if it can be separated into two groups of nodes such

that no two nodes in each group form an edge. It can be shown that

a graph is bipartite if and only if the smallest eigenvalue of the sign-

less Laplacian [15] |L|= |B||B|T =diag{d}+A is zero (here, the

absolute value | · | is to be understood in an element-wise manner).

AC with symmetric weights can be characterized by a weighted

graph in which each edge (i, j) is associated with a strictly posi-

tive weight wij . For weighted graphs, the nonzero elements of the

adjacency matrix Ã are defined by [Ã]ij = wij . The weighted in-

cidence matrix is given by B̃ = Bdiag{√w}, where all weights

wij are arranged into a length-|E| vector w and the square-root

is to be understood element-wise. The weighted Laplacian reads

L̃= B̃B̃
T diag{d̃}−Ã with the weighted degree vector d̃ = Ã1.

The signless weighted Laplacian is given by |L̃|=diag{d̃}+Ã.

WSN are often modeled in terms of random geometric graphs

[16]. Here, the I nodes are independently and uniformly distributed

in a region A and communicate with nodes that lie within a certain

(communication) range r. To avoid boundary effects, the region is

often modeled as a torus.

3. GENERALIZED MH WEIGHTS

We assume a scenario in which agent i obtains an initial value si.
The goal is to compute at each node the average of the measured
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values, i.e., s̄= 1
I

∑

i
si. Let xi[k] denote the estimate of s̄ at node

i and time k. With the initialization xi[0] = si, AC performs the

following local updates:

xi[k+1] = wii xi[k] +
∑

j∈Ni

wij xj [k].

Here, wij = wji is a weight associated with the edge (i, j) and wii

quantifies the persistence of the local node estimate. Defining the

vector x[k] = (x1[k] . . . xI [k])
T , the AC update can be rewritten as

x[k+1] = Wx[k], (1)

where the symmetric weight matrix W is defined by [W]ij = wij

(we use the convention that wij = 0 unless (i, j) ∈ E or i = j).

To guarantee convergence of AC, the following conditions need to

be satisfied [10]: W1 = 1 (equivalently, 1T
W = 1

T due to the

symmetry of W) and ρ
(

W− 1
I
11

T
)

< 1, where ρ(·) is the spec-

tral radius [17]. The first condition implies that W has to be doubly

stochastic, which can be ensured implicitly by choosing the weights

on the diagonal as wii=1−∑

j∈Ni
wij . Using the weighted Lapla-

cian, the AC weight matrix can then be written as W=I−L̃.

The constant weight (CW) design for AC assigns identical

weights wCW
ij = α > 0 to all edges [2]. Bounds on α that ensure

convergence are discussed in the next section. With CW, we have

W
CW = I− αL .

An AC design with improved performance is based on the MH al-

gorithm (e.g., [9]). Using a non-negative regularization parame-

ter ǫ ≥ 0, we introduce the following generalized version of MH

weights:

wMH
ij (ǫ) =











1
max{di,dj}+ǫ

, for (i, j) ∈ E ,
0 , for (i, j) 6∈ E and i 6= j,

1−∑

j 6=i
wMH

ij (ǫ) , for i = j .

(2)

Recall that di denotes the degree of node i. The conventional MH

weight designs are obtained with ǫ = 0 [9] and ǫ = 1 [12]. The latter

was proposed to guarantee convergence for any graph topology (see

next section). Decreasing ǫ also decreases the “self-loop” weights

wMH
ii (ǫ) and implies that the nodes tend less to preserve their own

current state.

GMH weights have the advantage that they are very easy to com-

pute and require only local information about the graph topology.

Better averaging performance can be achieved with weight designs

that require global graph parameters or are computationally more

demanding (e.g., [6]).

4. CONVERGENCE ANALYSIS

In this section we investigate the convergence of AC with GMH

weights. The convergence of AC with constant weights is addressed,

e.g., in [2]. Specifically, it is shown that 0<α< 1/dmax is neces-

sary and sufficient for convergence of AC/CW in arbitrary graphs.

Furthermore, it is known that with α = 1/dmax, AC/CW does not

converge for regular bipartite graphs. Since for d-regular graphs

wMH
ij (0) = wCW

ij = 1/d, (i, j) ∈ E , AC/GMH with ǫ = 0 does

not converge either in regular bipartite graphs. This can be illus-

trated using the structure of the weight matrix. For a d-regular bi-

partite graph, we have L = dI − A and hence W
CW = A/d for

α = 1/d. If the graph in addition is bipartite, the nodes can always

be re-ordered such that the adjacency matrix has a block structure

with diagonal blocks identical to zero; this further implies

W
CW = W

MH(0) =
1

d
A =

1

d

(

0 A0

A
T
0 0

)

.

In view of (1), the nodes in each group average the current estimates

of the nodes in the other group. Asymptotically, each node estimate

oscillates between the two means of the measurements in each group

(unless the graph is 2p-partite with p > 1).

We next address the open question whether there are other

classes of graphs for which AC/GMH does not converge, This will

lead to necessary and sufficient convergence conditions. In the lit-

erature, e.g. [6], it is only stated that bipartite graphs violate the

stability constraints.

4.1. Sufficient Conditions for Convergence

We first show that ǫ > 0 is sufficient for convergence of AC/GMH,

regardless of the graph topology.

We recall that W = I − L̃ and hence W is a doubly stochas-

tic matrix, which has an eigenvalue with magnitude one and associ-

ated eigenvector 1/
√
I . Observe that L̃ is positive semidefinite and

λk(W) = 1−λk(L̃) (where λk(A) denotes the sorted eigenvalues

of A). The convergence condition ρ
(

W− 1
I
11

T
)

<1 is thus equiva-

lent to the requirement that (i) the maximum eigenvalue of L̃ is less

than two, ρ(L̃) = maxk λk(L̃) < 2, (ii) the zero eigenvalue of L̃

has multiplicity one. The latter condition is satisfied if and only if

the underlying graph is connected. This can easily be confirmed via

the quadratic form

v
T
L̃v =

∑

(i,j)∈E

wij(vi − vj)
2.

For positive weights, this quadratic form equals zero if and only if

vi = vj for any two connected nodes. For a connected graph, the

unique normalized vector meeting this requirement is v = 1
√
I. It

remains to study the constraint ρ(L̃)< 2. Since L̃= diag{d̃}−Ã

and Ã1 = d̃, the Gershgorin circle theorem [18] implies that the

eigenvalues λ(L̃) of L̃ satisfy
∣

∣λ(L̃)− d̃i
∣

∣ ≤ d̃i .

Here, the ith element of d̃, d̃i=
∑

j∈Ni
wij , is the weighted degree

of node i. In particular, we have the bound λ(L̃)≤ 2d̃i. Therefore,

d̃i<1 for all i ∈ V is a sufficient condition for AC convergence.

With GMH weights, we have max{di, dj} ≥ di and hence

wMH
ij (ǫ) ≤ 1

di+ǫ
, which in turn implies

d̃i ≤
∑

j∈Ni

1

di + ǫ
=

di
di + ǫ

.

Thus, ǫ > 0 is a sufficient condition for convergence because it en-

sures d̃i<1. It is seen that ǫ=1 as in conventional MH [12] is actu-

ally a very conservative choice. For the case of constant weights, we

have d̃i = αdi and hence recover the sufficient convergence condi-

tion α<1/dmax.

4.2. Necessary Conditions for Convergence

We next provide necessary conditions for AC convergence and we

identify the corresponding critical graph topologies.

Theorem 1: The conditions ǫ > 0 (AC/GMH) and α < 1/dmax

(AC/CW) are necessary for convergence. AC/GMH with ǫ = 0 and
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AC/CW with α = 1/dmax converge unless the graph is regular and

bipartite.

Proof: Lemma 1 below establishes

ρ(L̃) ≤ ρ(|L̃|),

with equality if and only if the graph is bipartite. Furthermore, for

AC/GMH with ǫ ≥ 0 and for AC/CW with α ≤ 1/dmax, Lemma 2

below states that

ρ(|L̃|) ≤ 2,

with equality if and only if the graph is regular and ǫ = 0 (AC/GMH)

or α = 1/dmax (AC/CW). Hence, for regular bipartite graphs and

ǫ = 0 (AC/GMH) or α = 1/dmax (AC/CW), we have ρ(L̃) = 2,

which implies ρ
(

W−1
I
11

T
)

= 1 und hence divergence of AC. If the

graph is not regular or not bipartite, AC converges even with ǫ = 0
(AC/GMH) and α = 1/dmax (AC/CW) since here ρ(L̃) < 2. �

The next Lemma is a specialization of [19, Lemma 2.1] to

weighted Laplacians.

Lemma 1: For any weighted connected graph with strictly positive

weights, the weighted Laplacian L̃ satisfies

ρ(L̃) ≤ ρ(|L̃|).

Equality holds if and only if the graph is bipartite.

Proof: According to [20, Theorem 8.1.18], ρ(L̃) ≤ ρ(|L̃|). Fur-

thermore, [20, Theorem 8.4.5] states that equality holds if |L̃| is ir-

reducible (in our case this is the case since the underlying graph is

assumed to be connected) and there exists a diagonal matrix Λ =
diag{ejϕ1 , . . . , ejϕI } such that

L̃ = ejθΛ|L̃|Λ−1. (3)

Here, ejθ is the phase of the largest eigenvalue, which in our case

equals plus one since L̃ is positive semi-definite. Denoting the ele-

ments of L̃ by l̃ij , (3) can be rewritten as

l̃ij = ej(ϕi−ϕj )|l̃ij |. (4)

Due to W = I− L̃, we furthermore have

l̃ij =











−wij , (i, j) ∈ E ,
∑

k∈Ni
wik, i = j,

0, else.

Condition (4) is trivially satisfied for i = j and for l̃ij = 0. It

remains to study the case (i, j) ∈ E ; here, (4) is equivalent to wij =

−ej(ϕi−ϕj)|wij |, which in turn necessitates ϕi − ϕj = π mod 2π,

(i, j) ∈ E . Suppose we pick an arbitrary node i0 with associated

phase ϕi0 . Then, ϕj = ϕi0 + π mod 2π for all neighboring nodes

j ∈ Ni0 . Furthermore, the neighbors i ∈ Nj for j ∈ Ni0 , i.e., all

nodes that are two hops away from i0, must have ϕi = ϕi0 mod 2π.

Continuing this argument iteratively, it follows that ϕj = ϕi0 mod
2π if there is an even number of edges between i0 and j and ϕj =
ϕi0 + π mod 2π if there is an odd number of edges between i0 and

j. This implies that there are two groups of nodes, i.e., one with

ϕj = ϕi0 + π mod 2π and one with ϕj = ϕi0 mod 2π, where

none of the nodes in a group are neighbors. Thus, the underlying

graph has to be bipartite. �

The following Lemma establishes an upper bound on the spec-

tral radius of the signless Laplacian.

Lemma 2: For a connected graph with GMH weights ǫ ≥ 0 or CW

with α ≤ 1/dmax, the spectral radius of the the signless Laplacian

is bounded as

ρ(|L̃|) ≤ 2.

Equality is obtained if and only if the graph is regular and ǫ = 0
(GMH) or α = 1/dmax (CW).

Proof: According to [20, Theorem 8.1.22 and Theorem 8.4.4], we

have ρ(|L̃|) ≤ maxi

∑I

j=1 |l̃ij | with equality if and only if all row

sums of |L̃|=diag{d̃}+Ã are equal. These row sums are given by
∑I

j=1 |l̃ij | = 2d̃i = 2
∑I

j=1 wij .

For AC/CW with α ≤ 1/dmax, d̃i = αdi ≤ 1 and hence

ρ(|L̃|) ≤ 2. Equality holds if and only if (i) all degrees di are iden-

tical, i.e., di = d, and thus the graph is d-regular, and (ii) α = 1/d.

For AC/GMH with ǫ ≥ 0, max{di, dj} ≥ di and hence

wMH
ij (ǫ) ≤ 1

di+ǫ
, which in turn implies d̃i ≤ di

di+ǫ
≤ 1. Again,

ρ(|L̃|) ≤ 2 with equality if and only if (i) ǫ = 0 and (ii) the graph is

regular (i.e., all degrees di are identical. �

4.3. Discussion

According to the results above, ǫ > 0 and α < 1/dmax are nec-

essary and sufficient conditions for convergence of AC/GMH and

AC/CW, respectively, on arbitrary connected graphs. However, on

graphs that are not regular or not bipartite, convergence is obtained

even with ǫ = 0 and α = 1/dmax. Furthermore, as will be seen

in the simulation results, GMH with ǫ = 1 is not necessarily opti-

mal for regular bipartite graphs. More specifically, for the case of

4-regular graphs the optimum ǫ is roughly inversely proportional to

the number of nodes.

In contrast to applications like grid computing, it is rather un-

likely in the context of WSN that the communication graph is regular

and bipartite. If the WSN is modeled via random geometric graphs,

the probability for a regular topology can be shown to decrease ex-

ponentially with increasing network size. Thus, the probability for a

regular topology is non-vanishing only for very small random geo-

metric graphs. If in addition we require bipartiteness, geometric con-

straints imply that the worst case are 4-regular graphs on the torus

that are bipartite. In a finite two-dimensional region, 4-regular bipar-

tite graphs are not feasible. In higher dimensions, regular bipartite

graphs with larger degrees are possible but very unlikely to occur

with random geometric graph models.

In summary, in small WSN the regularization parameter ǫ of

AC/GMH should be chosen larger than in huge WSN. For the latter,

AC/GMH with ǫ = 0 will usually be superior.

5. NUMERICAL RESULTS

In general, the convergence rate of AC/GMH depends on ǫ. To study

this dependence, Fig. 1 shows the mean-square error (MSE) in dB

versus ǫ after 30 AC iterations for different graphs and independent,

identically distributed (i.i.d.) initial values si. In a 4-regular bipar-

tite graph with 16 nodes, the optimum regularization turns out to be

ǫ ≈ 1. In the case of the regular bipartite graph with 100 nodes,

however, the minimum MSE is obtained with ǫ ≈ 0.25. These re-

sults agree with the analytical findings regarding optimal CW in the
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Fig. 1. MSE (in dB) after 30 iterations versus GMH parameter ǫ for

different graph topologies; initial measurements were i.i.d.

asymptotic regime [6]. For an “almost regular graph,” obtained by

deleting one edge from the 16-node 4-regular bipartite graph, the

optimum MSE is achieved with ǫ ≈ 0.7. In the case of connected

random geometric graphs, (almost) regular topologies are highly un-

likely; here, the optimum is at ǫ= 0, i.e., a non-zero regularization

term only slows down convergence. For possibly unconnected ran-

dom geometric graphs (resulting, e.g., from a smaller communica-

tion radius), the MSE depends weakly on the GMH parameter ǫ, with

a poorly pronounce optimum larger than 0; this can be attributed to

the fact that here smaller unconnected components (mostly consist-

ing of 2 nodes) arise in the graph. We also note that in all our simu-

lations choosing ǫ > 1 never lead to performance improvements.

We next compare the performance of the two extreme cases of

GMH, i.e., ǫ = 0 and ǫ = 1. We consider random geometric graphs

with I = 100 nodes in a square region A. Denoting the commu-

nication range by r, we define the connectivity c as c= r
√

I/|A|;
note that c is proportional to the average number of neighbors in the

graph. The initial values si were again i.i.d. Fig. 2 shows the me-

dian MSE advantage in AC/GMH obtained with ǫ = 0 relative to

ǫ = 1 as a function of network connectivity c. Results are shown for

k = 20 and k = 70 iterations and for static and dynamic networks.

In static networks, the topology and hence the GMH weights do not

change over time. In the dynamic case, 20 nodes randomly changed

their position during each time step, resulting in time-varying GMH

weights (further details on this node mobility model and its impact

on the averaging performance can be found in [21]). It is seen that

in this scenario, ǫ = 0 is superior to ǫ = 1 in all operating con-

ditions except for poorly connected static networks, where ǫ = 1
is slightly superior after 70 iterations. In the static case, the MSE

advantage increases with increasing connectivity c whereas in the

dynamic case the MSE advantage is almost independent of c. For

strongly connected graphs (c = 2.8), ǫ = 0 performs better than

ǫ = 1 after 70 iterations by about 18 dB (static networks) and 11 dB

(dynamic networks). This can be attributed to the fact that for well-

connected graphs it is highly unlikely to have (almost) regular or

bipartite topologies. We performed the same experiments also with

(spatially) correlated initial values (results not shown). In this case

we observed that ǫ = 0 is superior even at low connectivity (c ≈ 1).

6. CONCLUSIONS

We introduced a generalized Metropolis-Hastings weight design for

average consensus that uses an arbitrary non-negative regularization

connectivity c
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Fig. 2. Median MSE advantage of AC/GMH with ǫ = 0 relative to

ǫ = 1 versus connectivity c after 20 and 70 iterations in static and

dynamic RGGs with I=100 nodes.

parameter ǫ. Existing MH weight designs are re-obtained as special

cases with ǫ = 0 and ǫ = 1. We further provided a comprehensive

convergence analysis and explicitly stated necessary and sufficient

convergence conditions. Our theoretical and numerical results indi-

cate that conventional MH with ǫ = 1 in most case is overly conser-

vative. In particular, in realistic sensor network scenarios GMH with

ǫ = 0 outperforms ǫ = 1 significantly under virtually any operating

conditions.
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