
DEEP HYBRID NETWORKS WITH GOOD OUT-OF-SAMPLE OBJECT RECOGNITION

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington

PO Box 600, Wellington, New Zealand
{muhammad.ghifary, bastiaan.kleijn, mengjie.zhang}@ecs.vuw.ac.nz

ABSTRACT

We introduce Deep Hybrid Networks that are robust to the recogni-
tion of out-of-sample objects, i.e., ones that are drawn from a differ-
ent probability distribution from the training data distribution. The
networks are based on a particular combination of an auto-encoder
and stacked Restricted Boltzmann Machines (RBMs). The auto-
encoder is used to extract sparse features, which are expected to be
noise invariant in the observations. The stacked RBMs then observe
the sparse features as inputs to learn the top hierarchical features.
The use of RBMs is motivated by the fact that the stacked RBMs typ-
ically provide good performance when dealing with in-sample obser-
vations, as proven in the previous works. To improve the robustness
against local noise, we propose a variant of our hybrid network by
the usage of a mixture of sparse features and sparse connections in
the auto-encoder layer. The experiments show that our proposed
deep networks provide good performance in both the in-sample and
out-of-sample situations, particularly when the number of training
examples is small.

Index Terms— deep hybrid network, out-of-sample, noise ro-
bustness, sparse features, object recognition

1. INTRODUCTION
In real world problems, good learning algorithms for object recogni-
tion often degrade when facing the out-of-sample data, e.g., recog-
nizing objects under unseen environment with noise and/or objects
with a distribution different from the learned distribution. Further-
more, this problem becomes harder to solve when the availability of
training samples is limited. To be useful in practical applications,
object recognition methods should be able to deal with those unex-
pected situations.

To recognize noisy objects, a typical solution is to incorporate
synthetic noise within the training set [1]. However, this may raise
another problem if the type of unseen noise is unknown. Another
solution is to design a robust model without any explicit noise com-
pensation. It can be built based on handcrafted feature extractors
(e.g., LBP [2] and HoG [3]) or based on learning good features (e.g.,
deep learning [4] and sparse coding [5]). It is likely that such meth-
ods effectively denoise the input during the mapping to the features.

In this work, our objective is to create a deep learning approach
that learns noise-invariant hierarchical features that can be used
for recognition without noise compensation at training time. It
is widely known that deep learning now achieves the best perfor-
mance in many in-sample object recognition tasks [6, 7, 8]. It can
be considered a new breakthrough in speech recognition (see [9]
for a recent overview). However, the robustness of deep learning
against the out-of-sample data requires further investigation. A

recent method by Tang and Eliasmith [10] is an example of deep
learning approach that can handle out-of-sample problem. In the
speech domains, several methods have been proposed to overcome
the similar problems [11, 12].

We hypothesize that the robustness of hierarchical features
induced by deep learning can be improved by preserving noise-
invariant features in the bottom layer. The upper-layer features
extracted from the invariant bottom-layer features are then trained
using the basic deep learning algorithm of [4]. Based on that hy-
pothesis, we developed a noise-robust deep architecture, which we
refer to as Deep Hybrid Network (DHN). It consists of a sparse
auto-encoder [13, 14] to train the bottom layer and stacked Re-
stricted Boltzmann Machines (RBMs) [4] to train the upper layers.
The sparse features induced by the auto-encoder are expected to be
invariant to noisy observations so that the stacked RBMs always
observe the lower-layer features as if they receive clean (in-sample)
inputs. We also investigate the performance of the combination of
sparsely-connected weights and sparse features, which produces a
variant of the DHN that we refer to as sparse Deep Hybrid Network
(sDHN). Our experiments show that the DHN and sDHN provide
good performance over a wide range of seen and unseen conditions,
particularly when the number of training examples is small.

2. RELATED WORK
In this section, we place our work in the context of the existing liter-
ature. Before we start our discussion, we introduce our notation and
terminology.

Let us consider a deep neural network with l hidden layers. We
will denote the visible vector and the hidden vectors by v, h(1), ...,
h(l), respectively, and the connection weights or dictionary between
two adjacent layers by the matrices W(1), ...,W(l−1). Here we as-
sume that each element in all vectors has a value in the range of
[0, 1]. We will use two notions of sparsity. The first type of sparsity
is that of sparse features, i.e., h(1) with a few non-zero nodes. The
second type of sparsity is that of sparse weights, i.e., W(1) with a
few non-zero elements formed a particular pattern.

We also define a notion of feature noise invariance in terms of
ε-invariance. Let us denote a clean data and a noisy data vector
by v, ṽ ∈ Rnv , respectively, where ṽ = v + ψ with ψ ∈ Rnv

is an arbitrary unit-length noise vector. Let us also denote a j-th
first hidden layer node activation given v by h(1)

j and the same node

activation given ṽ by h̃(1)
j . The feature h(1) ∈ Rn

h(1) is said to be
ε-invariant if it satisfies the following condition

∀j = 1, ..., nh(1) , d(h
(1)
j , h̃

(1)
j) ≤ ηε

subject to ‖ψ‖ ≤ η, (1)

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5474

where d(·, ·) is any distance measure, η is an upper bound for the
noise magnitude, and ε is a small error constant. We suggest that a
classifier is likely to be robust to noise with a certain bound in the
limit that η → 0 if it has features that satisfy (1) for a particular
choice of ε.

Encouraging sparse features is one of the approaches to produc-
ing features that are robust to noise [15, 14]. It was initially achieved
by sparse coding [5], which can produce sparse features and mimic
certain properties of biological visual area V1, e.g., produce an in-
terpretable dictionary like edge detector. It has performed well for
image restoration [16, 17] and object classifications [18, 19]. In deep
learning, there exist several approaches to imitating sparse coding
to produce sparse features by regularization [20, 14]. It has been
claimed that sparse features in deep learning may provide good ro-
bustness to noise [14] and to some affine transformations [21].

Because the sparse feature learning algorithm typically has two
components: i) an interpretable dictionary, which induces sparse fea-
tures, and ii) an encoder function, it raised a question whether the
sparse features or the encoder function may lead to a better discrim-
inative model. Coates and Ng [22] suggested that the classification
performance might be strongly correlated to the choice of encoder
function rather than the interpretability of the learned dictionary;
some classifiers produce an excellent performance even using a ran-
domly generated dictionary. However, the sparse features induced
by the interpretable dictionary are useful when the availability of la-
beled examples is limited [22].

Recently, Tang and Eliasmith [10] proposed a robust-to-noise
hybrid network referred to as sDBN, which is a Deep Belief Net-
work with sparse weights in the bottom layer. It is trained with-
out any noise compensation and performs well in the recognition of
handwritten digits with some types of noise. The sparse weights are
the result of locally assigned connections, i.e., assigning each h(1)

node to an s × s sub-window of visible layer v represented in a
2D matrix. With local connections, noise in a subset of v will only
affect a particular subset of h(1). Moreover, [10] also proposed a
special kind of denoising method referred to as probabilistic denois-
ing. It is applied to sDBN to recover a few nodes in h(1) suspected
as noise. The drawback using this denoising is that it increases the
time complexity at both training and test time.

Without the probabilistic denoising, we hypothesize that the fea-
ture h(1) in sDBN will be less invariant if it is subjected to dis-
tributed noise, e.g., Gaussian white and impulse noise. The perfor-
mance may also degrade significantly when the number of labeled
training data is small. Therefore, we need more general building
blocks of deep network to preserve invariance over any type of noise.

3. OUR METHODS
The main motivation of this work is to reduce the change between
h
(1)
j and h̃(1)

j as stated in (1), including when the number of train-
ing samples is small. We introduce a deep architecture that we
refer to as Deep Hybrid Network (DHN). It consists of an auto-
encoder [13] on the bottom layer and stacked Restricted Boltmann
Machines (RBMs) [4] on the top of the first hidden layer. We also
introduce a variant of DHN that incorporates both types of sparsity
mentioned in Section 2. We refer the second variant as sparsely-
connected Deep Hybrid Network (sDHN).

3.1. Deep Hybrid Network
The Deep Hybrid Network (DHN) is proposed in order to obtain
two properties: 1) to retain good generalization achieved by training
stacked RBMs, and 2) to preserve invariant features over scattered

noise achieved by sparsifying h(1). Considering the fact that stacked
RBMs perform well on in-sample recognition problem, we encour-
age the bottom RBM to observe the denoised feature h(1) rather than
to observe the data directly.

The sparse features h(1) is extracted by the auto-encoder. Before
we define the auto-encoder, let us define v ∈ Rnv as a visible vector,
h(1) ∈ Rn

h(1) as a feature vector, W(1) ∈ Rnv×n
h(1) as a fully-

connected weight matrix, fencoder : Rnv → Rn
h(1) as an encoder,

and fdecoder : Rn
h(1) → Rnv as a decoder. The auto-encoder used

in DHN is defined by

fencoder(v) = σ((W(1))>v + b) = h(1), (2)

fdecoder(h
(1)) = σ(W(1)h(1) + c), (3)

where σ(·) is the logistic function, and b ∈ Rn
(1)
h and c ∈ Rnv are

the hidden and visible biases, respectively.
As is typical in deep neural networks, DHN has two training

stages: unsupervised greedy layer wise training referred to as pre-
training, and supervised fine-tuning. In the pre-training stage, the
auto-encoder is optimized by minimizing the cost function

l(W(1),b) =

N∑
l=1

‖f (l)
decoder(h

(1))− v(l)‖22 + βKL(ρ̂(l)‖γ), (4)

where β is a regularization constant controlling the sparsity, ρ̂j =

E[h(1)
j] is the average activation of j-th hidden node in h(1) over

all training examples, γ is a uniform vector representing the sparsity
target, KL(·‖·) is a variant of Kullback-Leibler divergence defined
in the differentiable sparse coding work [18], N is the number of
training examples.

After pre-training W(1) and b, each observed instance is en-
coded into a sparse feature h(1). From a probabilistic viewpoint,
h
(1)
j can be considered as P (h

(1)
j = 1|v). To provide binary inputs

for the stacked RBMs, we sample from P (h
(1)
j = 1|v) to obtain

a binary value for node h(1)
j . The RBMs are pre-trained using k-

contrastive divergence (k-CD) learning [23]. After the pre-training
stage is finished, we transform DHN into a feed-forward neural net-
work and then fine-tune it using supervised back-propagation.

We expect an additional property produced by sparsifying the
features with respect to the advantage of an interpretable dictionary.
The property is aimed to retain good generalization performance
when using a small number of labeled training examples, as sug-
gested by Coates and Ng [22]. Hence, DHN is also expected to
perform well in the recognition of out-of-sample data when trained
using a small training set.

It is natural to ask why we use the auto-encoder as the bot-
tom building block as sparse features can also be encouraged us-
ing RBM-based method, e.g., sparse RBM [20]. However, optimiz-
ing the hyperparameters of sparse auto-encoder in (4) such as β, γ
is simpler than optimizing the hyperparameters of sparse RBM in
terms of obtaining an interpretable dictionary. The sparse RBM nat-
urally has the learning rate and the momentum to be tuned, each
of which does not exist in sparse auto-encoder, that makes the op-
timization harder. Moreover, as simulated by Larochelle et al. [24],
auto-encoder learning might be more appropriate than RBM learning
in terms of the discovery of good features for a discriminative task.
Hence, we suggest that the auto-encoder may lead to more invariant
features than the ones discovered by RBM training.

5475

Fig. 1: The MNIST digit images with various types of noise: clean,
2-pixel border, block, impulse-04, back-im

(a) DBN (b) DHN

(c) sDBN (d) sDHN
Fig. 2: The first 36 columns of weights W(1) after training using
60,000 MNIST examples.

3.2. Sparsely-connected Deep Hybrid Network

Although sparse features in DHN are expected to be invariant, the
fully-connected weights specified in the auto-encoder may still cause
the features h(1) to be sensitive to locally occluded image. As de-
scribed in [10], sparse weights between v and h(1) can reduce the
effect of noise on local regions. To incorporate both properties of
sparse features and sparse weights, we propose a variant of the DHN
that we refer to as the sparsely-connected Deep Hybrid Network
(sDHN), where the layer connections are similar to sDBN.

To obtain the sparse weights, let us denote a binary mask by
M ∈ Rnv×n

h(1) . Each column of M represents a connection be-
tween each node in h(1) to an s×s sub-image in v, where Mij = 1

denotes that a link between vi and h(1)
j exists. The choice of the

s× s sub-image for each node h(1)
j is random. We then compute the

sparse weights W(1)
M by a masking operation

W
(1)
M = W(1) �M, (5)

where � is the element-wise multiplication. This operation is also
applied to make the weight gradient sparse at the learning stage.

Different from sDBN, the features of h(1) are sparse in sDHN. If
W

(1)
M is visualized, the difference between W

(1)
M learned by sDBN

and sDHN can be seen from Fig. 2(c)-2(d). The results will be
discussed in section 4.3.

Note that we do not employ a special technique called proba-
bilistic denoising that can be used at test time [10]. Of course, we
could produce more robust model using this technique, but it would
increase the computational complexity. In this work, we only fo-
cus on the architecture and sparsity with respect to the robustness to
noise, while keeping the complexity at inference stage low.

4. EXPERIMENTAL RESULTS
In this section, we investigate the robustness of our proposed meth-
ods on handwritten digits compared to other deep networks. More
specifically, we evaluated and compared the recognition perfor-
mance of four deep networks, namely, DBN [4], sDBN [10], DHN,
and sDHN, on various types of noise.

4.1. Data Preparation
We used two handwritten digit data sets: MNIST,1 which consists
of 60,000 training images and 10,000 test images of size 28 × 28,
and USPS,2 which has 7,291 training images and 2,007 test images
of size 16 × 16. Each gray pixel of the images is normalized to a
real value of range [0, 1]. We created a rescaled version of the USPS
test set used for the cross-domain recognition evaluation (see Section
4.6), which we refer to as r-USPS. Each r-USPS sample is of the size
28 × 28, the same size as an MNIST sample.

We also created noisy test examples extracted from the MNIST
test set. This test set is used to evaluate the performance of the deep
networks against noise. The types of noise used in the experiment
are 2-pixel border, block occlusion with random position and size
(block) in each sample, impulse noise with ratio of 40% (impulse-
04), and background image (back-im) taken randomly from three
natural scene patches (see the samples in Fig. 1).

4.2. Training Setup
Each network has the same architecture with three layer of hidden
nodes of size 500, 500, 2000, respectively, and 10 target nodes. The
size of visible nodes depends on the dimension of the data set (784
for the MNIST and 256 for the USPS). For the sparsely-connected
architectures, the connections of size 7 × 7 were specified by the
binary mask M.

All networks were trained by unsupervised greedy layer-wise
pre-training and followed by supervised fine-tuning [4]. In every
RBM training, we ran 50 epochs of mini-batched learning with
learning rate α = 0.1, weight decay λ = 10−5, and 25-CD3. In
the auto-encoder training, we used L-BFGS back-propagation as the
optimizer with sparsity target γ = 0.1 and regularization constant
β = 3 [25]. Each network was fine-tuned by Conjugate Gradient
back-propagation [7]. We ran ten independent experiments for each
model to obtain the results in terms of mean and standard deviation.

4.3. Effect of Sparsity
It is useful to study the behavior of the first layer after pre-training
using the MNIST training set. We visualize the weight bases (the
columns of W(1)) as shown in Fig. 2. We can see that the sparse
architectures (DHN and sDHN) have more interpretable weights,
which look like digit pen-stroke patterns.

In sDBN and sDHN, the weight representations are more local-
ized in particular parts. This means that each connection between
h
(1)
j and v acts as a local filter to map an image patch to a real value.

If a 7 × 7 patch is contaminated by noise, it will disturb only one
node in h(1). Because sDHN produces an interpretable dictionary,
it is expected to obtain more invariant node h(1)

j associated with a
particular patch than sDBN.

On the other hand, sDBN and sDHN might lose capacity in
terms of the number of distinct samples that can be captured. It
is based on the claim that the information capacity is proportional to

1http://yann.lecun.com/exdb/mnist
2http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html
3The same number of k of k-CD specified in [10] for a fair comparison

5476

the number of connections in the network [26]. As the connections
are more sparse, sDBN and sDHN may fail to store a large number
of distinct samples as well as the fully connected networks. In gen-
eral, it can be expected that the best robustness that a network can
achieve decreases with the utilization of its capacity.

4.4. Baseline Performance
We compared the baseline performance of each network on the clean
MNIST or USPS data sets. The baseline performance here refers
to the recognition of the in-sample test set. The comparison is il-
lustrated in Table 1. We can see that the DBN and sDBN outper-
form our both proposed networks in the case of learning by using the
full training set (the first and second row). This suggests that either
sparse weights or sparse features do not improve the performance on
recognizing the in-sample test digits when sufficiently large training
examples are available.

In the case of using a smaller training set (third row), the DHN
and sDHN, each of which has an interpretable dictionary, perform
better than the DBN and sDBN. This is consistent with the hypoth-
esis that the model with an interpretable dictionary obtains better
generalization when it is trained using a few labeled examples [22].

Data set (#training) DBN sDBN DHN sDHN
MNIST (60,000) 0.96 ± 0.01 1.11 ± 0.01 1.13 ± 0.09 1.23 ± 0.01
USPS (7,291) 4.59 ± 0.08 4.46 ± 0.13 4.68 ± 0.00 4.78 ± 0.00
MNIST (1,000) 10.94 ± 0.95 9.22 ± 0.34 8.19 ± 0.38 7.96 ± 0.00

Table 1: The baseline error rates (%); each deep network was trained and tested us-
ing the full set of MNIST. The lowest score (a few have overlapping error confidence
intervals) for each setting are written in bold.

4.5. Noisy Test Set Evaluation
We evaluated all the trained networks for the case of out-of-sample
recognition by testing them on the noisy MNIST test sets. The types
of noise used are described in Section 4.1. The complete error rates
are shown in Tables 2 and 3.

It is clear that the DBN is unable to retain a good performance
for all the noisy test cases. The sDBN performs best in the case of
block noise but is less robust when dealing with non-local noise (2-
pixel border, impulse-04, and back-im noise). In contrast, the DHN
and sDHN can cope with non-local noise, especially the impulse and
the background image noise. Both also perform better than others in
most cases well when the number of training samples is small.

While the sDHN is designed to cope with noise on local image
regions, it does not perform as well as sDBN in the recognition of
the test set with block occlusion. This performance is likely due to
the fact that most of the h(1) nodes observe the clean patches of the
block-occluded images. In this situation, the non-sparse RBM fea-
tures should provide better performance. In other words, this sug-
gests that sparse features might not helpful for sparsely-connected
networks in the recognition of images with mostly clean regions.

Noise DBN sDBN DHN sDHN
2-pixel border 89.36 ± 0.02 2.55 ± 0.02 2.17 ± 0.05 1.70 ± 0.02
block 49.83 ± 0.07 26.13 ± 0.20 41.67 ± 0.02 37.80 ± 0.09
impulse-04 88.30 ± 0.02 61.92 ± 0.53 32.07 ± 0.41 36.22 ± 0.19
back-im 48.77 ± 0.07 23.78 ± 0.20 5.38 ± 0.20 7.46 ± 0.05

Table 2: The error rates (%) on the MNIST test set with various types of noise. Each
deep network was trained using 60,000 clean MNIST training examples.

Noise DBN sDBN DHN sDHN
2-pixel border 89.51 ± 1.36 11.58 ± 0.08 8.57 ± 0.42 8.13 ± 0.00
block 67.04 ± 4.34 28.40 ± 0.80 39.36 ± 0.30 38.19 ± 0.00
impulse-04 87.26 ± 4.22 56.96 ± 4.72 26.63 ± 1.02 28.18 ± 0.56
back-im 63.60 ± 8.91 31.38 ± 3.03 11.06 ± 0.90 11.63 ± 0.00

Table 3: The error rates (%) on the MNIST test set with various types of noise. Each
deep network was trained using 1,000 clean MNIST training examples.

4.6. Cross-domain recognition: MNIST vs USPS
We also investigated the cross-domain recognition performance of
all networks. This type of evaluation is often conducted to evalu-
ate the transfer learning model, i.e., the model is tested on images
drawn from different probability distribution from the training im-
ages distribution. In this case, we chose the MNIST as the training
set and the r-USPS described in Section 4.1 as the test set.

The cross-domain recognition results are shown in Table 4. We
found that sDHN performs best for this case. Therefore, it may be
useful for solving the transfer learning problem. Furthermore, the
DHN and sDHN also perform better than the DBN and sDBN on
learning from 1,000 examples, similar outcome to the experiment
described in Section 4.4. It again confirms that the models with an
interpretable dictionary generalize better than ones without an inter-
pretable dictionary, when the training set is small. In other words,
the models might not achieve good results if they fail to obtain an
interpretable dictionary learned from a small training set.

#MNIST training DBN sDBN DHN sDHN
60,000 9.85 ± 0.02 11.21 ± 0.26 10.34 ± 0.26 8.88 ± 0.19
1,000 32.21± 0.33 34.18 ± 0.19 29.57 ± 1.54 24.44 ± 2.05

Table 4: The error rates (%) of deep networks trained using the MNIST training set, but
tested on the r-USPS test set (2,007 images)

5. CONCLUSIONS
In this work, we proposed the Deep Hybrid Network and evaluated
its robustness in dealing with out-of-sample object recognition. The
DHN consists of an auto-encoder as the bottom building block to
extract sparse invariant features and stacked RBMs on the top of the
auto-encoder. This particular combination encourages the RBMs to
always observe clean inputs, which has been proven to generalize
well as shown in many previous works. Trained on handwritten
digit examples without any noise compensation, the DHN obtains
significantly better results than the baseline method (DBN) in all
out-of-sample cases, without losing significant performance in the
in-sample situation. Compared with the sparse weight network re-
ferred to as sDBN, DHN in general performs better than sDBN in
the case of non-local noise.

We also combined the DHN with sparse weights to form the
sDHN. This combination has improved the performance of the DHN
against the block noise, but it can not compete with the sDBN on that
case. Besides the recognition of block-occluded images, both DHN
and sDHN perform better than other networks on learning from a
small number of examples. Furthermore, sDHN performs best in the
cross-domain recognition case, i.e., the setting of which the training
and test images of the same object category are taken from different
data sets. From experiments, we confirmed that our sparse feature
networks that have an interpretable dictionary perform better than
dense feature networks when they are trained from a small number
of examples.

5477

6. REFERENCES

[1] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Man-
zagol, “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion,”
In Journal of Machine Learning Research, vol. 11, pp. 3371–
3408, 2010.

[2] D.-C. He and L. Wang, “Texture unit, texture spectrum, and
texture analysis,” IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 28, pp. 509–512, 1990.

[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2005, pp. 886–893.

[4] G. E. Hinton and S. Osindero, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp.
1527–1554, 2006.

[5] B. A. Olshausen and D. J. Field, “Sparse coding of sensory
inputs,” in Current Opinion in Neurobiology. Science Direct,
2004, vol. 14, no. 4, pp. 481–487.

[6] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio, “Maxout networks,” in Proceedings of the 30th In-
ternational Conference on Machine Learning, 2013, pp. 1319–
1327.

[7] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann ma-
chines,” in the 12th International Conference on Artificial In-
telligence and Statistics (AISTATS), 2009, pp. 448–455.

[8] W. Y. Zhou, S. Zhu, A. Y. Ng, and K. Yu, “Deep learning of in-
variant features via simulated fixations in video,” in Advances
in Neural Information Processing Systems (NIPS), vol. 25,
2012, pp. 3212–3220.

[9] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. L.
Seltzer, G. Zweig, X. He, J. Williams, Y. Gong, and A. Acero,
“Recent advances in deep learning for speech research at mi-
crosoft,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2013, pp.
8604–8608.

[10] Y. Tang and C. Eliasmith, “Deep networks for robust visual
recognition,” in ICML, 2010, pp. 1055–1062.

[11] A. Mushtaq and C.-H. Lee, “An MCMC approach to joint es-
timation of clean speech and noise for robust speech recog-
nition,” in Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2013, pp. 7107–
7111.

[12] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of
deep neural networks for noise robust speech recognition,” in
Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2013, pp. 7398–
7402.

[13] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
“Greedy layer-wise training of deep networks,” in Advances in
Neural Information Processing Systems (NIPS), vol. 19, 2007,
p. 153.

[14] M. Ranzato, Y.-L. Boureau, and Y. LeCun, “Sparse feature
learning for deep belief networks,” in Advances in Neural In-
formation Processing Systems (NIPS), vol. 20, 2008, pp. 1185–
1192.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic de-
composition by basis pursuit,” SIAM Review, pp. 129–159,
2001.

[16] M. Elad and M. Aharon, “Image denoising via sparse and re-
dundant representations over learned dictionaries,” in IEEE
Transactions on Image Processing, vol. 15, 2006, pp. 3736–
3745.

[17] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for
color image restoration,” in IEEE Transactions on Image Pro-
cessing, vol. 17, no. 1, 2008, pp. 53–69.

[18] D. M. Bradley and J. A. Bagnell, “Differentiable sparse cod-
ing,” in Advances in Neural Information Processing Systems
(NIPS), vol. 21, 2009, pp. 113–120.

[19] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learn-
ing,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 34, no. 4, 2012.

[20] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net
model for visual area V2,” in Advances in Neural Information
Processing Systems (NIPS), vol. 20, 2007, pp. 873–880.

[21] J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. Ng,
“Measuring invariance in deep networks,” in Advances in Neu-
ral Information Processing Systems (NIPS), 2009, vol. 22, pp.
646–654.

[22] A. Coates and A. Y. Ng, “The importance of encoding ver-
sus training with sparse coding and vector quantization,” in
Proceedings of the 28th International Conference on Machine
Learning, 2011, pp. 912–928.

[23] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural Computation, vol. 14, pp.
1771–1800, 2002.

[24] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Ex-
ploring strategies for training deep neural networks,” Journal
of Machine Learning Research, vol. 1, pp. 1–40, 2009.

[25] Q. V. Le, J. Ngiam, A. C. A. Lahiri, B. Prochnow, and A. Y.
Ng, “On optimization methods for deep learning,” in Proceed-
ings of the 28th International Conference on Machine Learn-
ing (ICML), L. Getoor and T. Scheffer, Eds., 2011, pp. 265–
272.

[26] E. Fiesler, H. J. Caulfield, and A. Choudry, “Some theoretical
upperbounds on the capacity of neural networks,” in Proceed-
ings of the First Workshop on Neural Networks, vol. 2, 1990,
pp. 51–58.

5478

