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ABSTRACT

In this paper, we present an approach that classifies 3D ges-
tures using jointly accelerometer and gyroscope signals from
a mobile device. The proposed method is based on a convo-
lutional neural network with a specific structure involving a
combination of 1D convolution, averaging, and max-pooling
operations. It directly classifies the fixed-length input ma-
trix, composed of the normalised sensor data, as one of the
gestures to be recognises. Experimental results on differ-
ent datasets with varying training/testing configurations show
that our method outperforms or is on par with current state-
of-the-art methods for almost all data configurations.

Index Terms— 3D gesture recognition, convolutional
neural network

1. INTRODUCTION

Nowadays, most portable devices such as mobile phones are
equipped with inertial sensors like accelerometers and gyro-
scopes, so-called Micro-Electro-Mechanical (MEM) systems.
These sensors measure respectively 3-dimensional linear ac-
celeration and angular velocity and are widely used for enter-
tainment applications, e.g. games, among others. The appli-
cation that we consider here is the recognition of a set of 3D
gestures performed by a user to execute commands on the de-
vice (see Fig. 1). However, 3D gesture classification based on
MEM signals is very challenging due to three factors. First,
dynamic variations may occur when users produce intense
or phlegmatic gestures, slow or fast gestures. Secondly, se-
mantic variations are possible with users performing several
gestures from a large vocabulary with little training or tuto-
rial help. Finally, volumetric variations are challenging from
one user in a close world paradigm to multi-users in a open
world paradigm (e.g. human ability, left or right-handed, on
the move, in different contexts etc.). Classically, several pro-
cessing steps are needed to deal with these variations: input
data processing to reduce noise and enhance relevant infor-
mation, data clustering to reduce dimensionality, and gesture
model learning to build a strong classifier.

In this paper, we propose a novel gesture classification
method based on a convolutional neural network (ConvNet)
that operates on fixed-length, i.e. time-normalised, MEM

Fig. 1. Illustration of 9 gestures to be recognised.

data. As opposed to classical approaches, the proposed al-
gorithm is able, with neither advanced pre-processing nor
specific feature modelling or learning, to automatically ex-
tract and learn prominent features from the data as well as
effectively classify them into one of the 14 gesture classes.
With a thorough evaluation on different datasets, we show that
the proposed approach outperforms or is on par with state-
of-the-art methods that explicitly model temporal sequences
(like Hidden Markov Models) and/or involve “hand-crafted”
feature selection.

2. RELATED WORK

In the recent literature, three main strategies exist to deal with
3D accelerometer-based gesture recognition: probabilistic
temporal signal modelling, temporal warping or statistical
machine learning.

The probabilistic approach has mainly been studied with
discrete [1, 2, 3] and continuous HMMs [4]. For instance,
Kela et al. [3] use discrete HMMs (dHMM) from gesture ve-
locity profiles. The first step is the input data space clustering
in order to build a feature vector codebook. The second one
consists in creating a discrete HMM using the sequences of
vector codebook indexes. A correct recognition rate of 96.1%
is obtained with 5 HMM states and a codebook size of 8 from
8 gestures realised by 37 users. In order to use gesture data
correlation in time, Pylvänäinen [4] proposes a system based
on a continuous HMM (cHMM) achieving a recognition rate
of 96.76% on a dataset with 20 samples for 10 gestures re-
alised by 7 persons.

The second approach is based on temporal warping from
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a set of reference gestures [5, 6, 7]. Liu et al. [6] present
a method using Dynamic Time Warping (DTW) from pre-
processed signal data that gives gesture recognition and user
identification rates of respectively 93.5% and 88%, outper-
forming in this study the HMM-based approach.

The third strategy is based on a specific classifier [8, 9,
10]. Hoffman et al. [8] propose a linear classifier and Ad-
aboost, resulting in a recognition rate of 98% for 13 gestures
performed by 17 participants. The study of Wu et al. [9] pro-
poses to construct fixed-length feature vectors from the tem-
poral input signal to be classified with Support Vector Ma-
chines (SVM). Each gesture is then segmented in time and
statistical measures (mean, energy, entropy, standard devia-
tion and correlation) are computed for each segment to form
the final feature vectors. The resulting recognition rate is
95.21% for 12 gestures made by 10 individuals, outperform-
ing in this study the DTW results. Finally, the recent study
by Lefebvre et al. [10] proposes a method based on Bidirec-
tional Long-Short-Term Memory Recurrent Neural Networks
(BLSTM-RNN see [11]), which classifies sequences of raw
MEM data with very good accuracy, outperforming classical
HMM and DTW methods.

The algorithm proposed in this paper uses convolutional
neural networks (ConvNet) [12, 13] and belongs to the last
category. However, we do not partition the input signal into
smaller time segments or sequentially process the data like
with HMMs [1, 2, 4, 3], time warping based methods [5, 6, 7]
or recurrent neural networks [10]. The model is rather trained
and applied on the whole fixed-length gesture vectors, which
avoids the error-prone step of segment length and boundary
determination. Also, by using a ConvNet, features are auto-
matically learnt from the raw (normalised) input signal. Thus,
no ”hand-crafted“ feature design (such as for HMM code-
books or statistical descriptors) is required.

3. THE PROPOSED APPROACH

The proposed method is based on a ConvNet algorithm that
jointly classifies the accelerometer and gyroscope data of a
gesture as one of the NG gestures to be recognised. The MEM
data that correspond to a gesture are normalised to a fixed-size
matrix (here: 45×6; 45 time steps and 6 inertial features) and
then input to the network. The contribution of this paper is
an effective ConvNet architecture that operates on fixed-size
temporal MEM data, using 1D convolutions over time. The
first layers of this architecture automatically learn to extract
complex temporal patterns in the feature space, and the final
layer then fuses the information from different sensors.

In the following we will describe the data normalisation
procedure and then the proposed ConvNet classifier.
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Fig. 2. Basic ConvNet (A1) with alternating convolution and
subsampling layers, and visualisation of the classification of
a gesture (white: high activation, black: low activation).

3.1. Pre-processing

Gesture data are preprocessed in three steps: amplitude scal-
ing (normalisation), filtering and temporal scaling.

Gesture normalisation consists in dividing every sample
of the gesture by the maximum norm over the samples. It pro-
vides a linear scaling of every sensor-axis data between −1
and +1, effectively keeping the accelerometer/gyroscope am-
plitude ratio. Then, a discrete low-pass filter is applied, giving
a decreasing importance to past samples as well as reducing
the influence of noise: gf (t+1) = (1−β)·g(t+1)+β ·gf (t)
with g being the signal before filtering and gf the signal after
filtering, β = 0.7. In the last step (similar to [14]), temporal
scaling is carried out by setting a common duration for every
gesture. To this end, the gesture curvilinear length is approx-
imated by summing the Euclidean distances between succes-
sive samples and dividing them into equal intervals to get the
curvilinear coordinates of the new samples. Then, these new
samples are computed using a linear interpolation of the exist-
ing samples, and they directly form the input to the ConvNet.

3.2. Classification

We propose a specific convolutional neural network architec-
ture to classify the normalised MEM data of fixed size 45× 6
as one of the 14 gestures by activating one of the 14 out-
put neurons. The overall network architecture is illustrated
in Fig. 2. It comprises five layers (excluding the input layer):
alternating convolution and subsampling layers c1, s1, c2, and
s2 for low-level feature extraction, and a neuron layer n per-
forming the final classification. Each layer contains a certain
number of maps or neurons that we varied in our experiments
(see Section 4). All parameters are trained jointly produc-
ing a classifier with tightly integrated feature extraction, thus
avoiding prior “hand-crafted” feature design.

Classical ConvNets [12, 13] have been used successfully
for computer vision tasks, where the input is a 2D image or
image sequence and the convolution filters extract simple 2D
features (like edges) in the first layer(s) and more complex
features (like corners) in the subsequents layer(s). Recently,
ConvNets have also been applied to speech recognition prob-
lems [15], where for example, the convolutions are performed
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Fig. 3. Operation of 1D convolution and subsampling (max-
pooling) layers (here: c2 and s2).

over different frequency bands. In our case, the input feature
matrix contains 3D data from different sensors over time. 2D
convolutions in this feature space make less sense, and we ex-
perimentally show that, for our application, convolution maps
with 1D convolutions over time give the best results.

The operation of one convolution map and a subsequent
subsampling map is illustrated in Fig. 3. The output of a con-
volution map i is computed as:

ci(x, y) =
∑

k∈{1..ui}
l∈{1..vi}

wi,k,lI(x+ k, y + l) + bi , (1)

where I is the map of the previous layer connected to ci (can
be the input map or s1); ui and vi define the size of the convo-
lution kernel, wi are the trainable weights that form the kernel
(shared over all positions x, y), and bi is the bias. If several
input maps are connected to one convolution map, the output
is simply the sum of both convolutions.

Two types of subsampling maps follow the convolution
layers. In s1 we use averaging maps:

s1(x, y) = φ
(
ws1

∑
k∈{1..p1}
l∈{1..q1}

c1(xp1+k, yq1+l)+bs1

)
, (2)

where ws1 and bs1 are the trainable weight and bias, p1 and q1
define the size of the subsampling kernel, and the activation
function φ(x) = tanh(x).

The subsampling layer s2 contains max-pooling maps:

s2(x, y) = φ

(
max

k∈{1..p2}
l∈{1..q2}

c2(xp2 + k, yq2 + l)

)
, (3)

which simply output the maximum for each non-overlapping
region, i.e. there are no trainable parameters.

The final neuron layer contains one neuron for each ges-
ture class to be recognised. It computes:

n(i) =
∑
k,l

wn,k,ls2(k, l) + bn , (4)

where wn,k,l and bn are the trainable weights and bias. Here
the neurons n(i) are fully connected to every neuron of s2.

The output of the neurons n(i) goes through a softmax
activation function that ensures that all values are in [0, 1]:

o(i) =
exp(n(i))∑NG

k=1 exp(n(k))
(5)

with NG = 14. The final output o(i) is supposed to be 1
for the neuron representing the desired class and 0 for the
others. To train the network, the standard online error back-
propagation algorithm is used, minimising the energy func-
tion E =

∑N
j=1

∑NG

i=1
1
2 (oj(i) − tj(i))

2, with tj ∈ {0, 1}
being the desired output value of example j, and N the num-
ber of training examples.

Having trained the neural network, a new gesture is clas-
sified as gesture g by simply propagating the input pattern
forward and computing: g = argmaxi o(i).

4. EXPERIMENTAL RESULTS

4.1. Datasets & Testing Protocols

We collected two datasets (on an Android Nexus S Samsung
smartphone), DB1 and DB2, comprising 14 different gesture
classes. Our experiments have been carried out with four dif-
ferent configurations over these datasets, (protocols) P1-P4,
which are oriented towards different application scenarios.

The first dataset DB1 corresponds to a single user record-
ing 40 samples for every gesture class. DB2 contains samples
from 22 different users, with five samples per class for each
user. The 14 symbolic gestures comprise two families: linear
gestures (e.g. north, south, east and west flicks, and up, down,
pick and throw gestures) and curvilinear gestures (e.g. alpha,
heart, letter N, letter Z, clockwise and counter-clockwise).

From DB1 and DB2, four configurations were created.
The first protocol, P1, is based on DB1. Considering a single
user, it is oriented towards user personalisation applications,
with five samples used for training and 16 for testing. The
other three protocols are based on DB2. P2 is the multi-user
case, testing the ability of a classifier to absorb the variability
of different users performing the same gesture. From the five
samples available for each class and user, three are used for
training (924 in total) and two for testing (616 in total). P3 is
a more realistic open-world scenario, where every user can-
not be represented in the training set and it is up to the system
to generalise to new users without the need of any additional
personalisation. Its training set is composed of all the samples
from 17 users, and the five remaining users’ samples form the
test set. Finally, P4 is the most challenging case, in terms of
the generalisation capacity of the classifiers: the five samples
from one user form the training set, while the other 1470 from
unknown users are used for testing.

Every protocol is repeated 10 times in order to get mean-
ingful and representative results.
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P1 P2 P3 P4

c2 : 3x1 0.965±0.015 0.937±0.010 0.915±0.011 0.735±0.043

c2 : 1x3 0.956±0.012 0.927±0.016 0.891±0.026 0.691±0.059

c2 : 3x3 0.965±0.012 0.935±0.012 0.905±0.020 0.723±0.043

s2 : avg 0.959±0.015 0.936±0.008 0.915±0.020 0.684±0.064

Table 1. Recognition rates for different kernels (for a 5-5-4-
4-14 architecture). Kernel sizes for c2 are: 3 × 1 (temporal
convolutions), 1×3 (feature convolutions), and 3×3 (tempo-
ral+feature convolutions). The last row shows the results with
the average operation for s2 instead of max-pooling.

P1 P2 P3 P4

A1 0.965±0.015 0.937±0.010 0.915±0.011 0.735±0.043

A2 0.983±0.006 0.953±0.006 0.933±0.011 0.752±0.031

A3 0.979±0.005 0.985±0.009 0.934±0.015 0.787±0.034

Table 2. Recognition rates for different network architectures
(A1-A3) of increasing complexity.

4.2. Results

For all evaluations, we measure the overall recognition rate,
i.e. the number of correctly recognised gestures divided by
the total number of gestures in the test set. The rates for Con-
vNets are averaged over 30 runs with random weight initial-
isation. The ConvNets have been trained for 5000 iterations,
where early stopping is performed with a separate validation
set composed of 10% random samples from the training set.

4.2.1. Different network architectures

In the first set of experiments, we study the influence of the
network architecture, i.e. kernel sizes and number of maps, on
the recognition performance. Due to limited space, we only
present the most important results concerning the choice of
these different hyper-parameters.

The input is a matrix of 45 time steps times 6 features.
Kernels in c1 are of size 2 × 1, i.e. very simple 1D temporal
filters, followed by 4 × 1 averaging kernels in s1. The lat-
ter basically reduce the impact of temporal shifts of the input
signal. For c2, we evaluated the performance of a 5-5-4-4-14
ConvNet (c.f . Fig. 2) using kernel sizes: 3× 1 (temporal con-
volution), 1× 3 (feature convolution), and 3× 3 (temporal +
feature convolutions). Table 1 shows the resulting recognition
rates (and standard deviations). Temporal convolutions pro-
duce the best results on all datasets. Layer s4 contains max-
pooling maps with window size 4× 1, obtaining temporal in-
variance of more complex features over a certain time frame.
The last row in Table 1 shows that replacing these maps with
averaging maps (as in s1) decreases the performance.

We further varied the number of maps in each layer. Table
2 shows the results for three different architectures of increas-
ing complexity. A1 corresponds to the 5-5-4-4-14 ConvNet

P1 P2 P3 P4

DTW 0.997±0.004 0.940±0.002 0.917±0.001 0.781±0.016

cHMM 0.999±0.002 0.858±0.007 0.828±0.001 0.756±0.023

SVM 0.961±0.009 0.949±0.008 0.913±0.002 0.674±0.037

FDB+SVM 0.964±0.019 0.954±0.006 0.924±0.013 0.693±0.041

BLSTM 0.868±0.007 0.956±0.005 0.926±0.029 -

ConvNet 0.979±0.005 0.958±0.009 0.954±0.015 0.787±0.034

Table 3. Recognition rates for the different protocols P1-P4
and for different methods.

used in the previous experiments. A2 has a 4-4-14-14-14 ar-
chitecture. The 14 maps in c2 are composed of 8 maps result-
ing from 2 convolutions over each of the 4 maps in s2, and
6 maps with all combinations of pairs in s2. Finally, A3 has
the same connections scheme as A2 but with more maps, that
is 10-10-65-65-14. A3 performs best on almost all datasets
except P1 where rates are slightly below the ones of A2.

4.2.2. Comparison with state-of-the-art methods

Finally, we compared the results of the best ConvNet, A3, to
state-of-the-art methods applied to the same datasets. Table 3
summarises the results. The DTW method [16] uses variable-
sized signals that are filtered, normalised, vectorised, and
then classified by a k-Nearest-Neighbour classifier (k = 5).
cHMM [10] uses a left-to-right model composed of 12 states
and forward jumps limited to three states with filtered, nor-
malised, variable-sized input signals. The method using
SVMs works with fixed-size vectors (45 × 6 = 270) of
accelerometer and gyroscope data and a linear kernel. The
FDB+SVM method ([9]) applies SVMs on 19-dimensional
feature descriptors (mean, energy etc.) for 9 time segments
and 6 signal dimensions, i.e. feature vectors of 1026 dimen-
sions. Finally, the BLSTM method [10] works with the raw
input signal and uses a 100-neuron LSTM. The proposed
ConvNet outperforms all existing methods or is on par. For
P1, the results are slightly worse than with the DTW method.
This is probably due to the very small training set in this
configuration (only five examples for each gesture).

5. CONCLUSIONS

We presented a 3D gesture recognition approach based on a
convolutional neural network. The proposed algorithm clas-
sifies normalised fixed-length matrices of accelerometer and
gyroscope data using a specific type of architecture involving
a cascade of 1D temporal convolution maps and averaging as
well as max-pooling maps. Using different datasets and train-
ing/testing configurations including 14 different gestures, we
studied the influence of various important hyper-parameters
(kernel sizes, network size) on the overall performance, and
showed for almost all the cases that the recognition rates are
superior to those of state-of-the-art methods.
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