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ABSTRACT

In this paper we propose an algorithm for Single-hidden
Layer Feedforward Neural networks training. Based on the
observation that the learning process of such networks can be
considered to be a non-linear mapping of the training data to
a high-dimensional feature space, followed by a data projec-
tion process to a low-dimensional space where classification
is performed by a linear classifier, we extend the Extreme
Learning Machine (ELM) algorithm in order to exploit the
training data dispersion in its optimization process. The
proposed Minimum Variance Extreme Learning Machine
classifier is evaluated in human action recognition, where
we compare its performance with that of other ELM-based
classifiers, as well as the kernel Support Vector Machine
classifier.

Index Terms— Single-hidden Layer Feedforward Neural
networks, Extreme Learning Machine, Human Action Recog-
nition, Classification

1. INTRODUCTION

Extreme Learning Machine is a, relatively, new algorithm
for Single-hidden Layer Feedforward Neural (SLFN) netorks
training [1] that leads to fast network training requiring low
human supervision. Conventional SLFN network training al-
gorithms require the input weights and the hidden layer biases
to be adjusted using a parameter optimization approach, like
gradient descend. However, gradient descend-based learn-
ing techniques are generally slow and may decrease the net-
work’s generalization ability, since they may lead to local
minima. Unlike the popular thinking that the network’s pa-
rameters need to be tuned, in ELM the input weights and the
hidden layer biases are randomly assigned. The network out-
put weights are, subsequently, analytically calculated. ELM
not only tends to reach the smallest training error, but also the
smallest norm of output weights. As shown in [2], for feedfor-
ward networks reaching a small training error, the smaller the
norm of weights are, the better generalization performance
the networks tend to have. Despite the fact that the determi-
nation of the network hidden layer output is a result of ran-

domly assigned weights, it has been shown that SLFN net-
works trained by using the ELM algorithm have the proper-
ties of global approximators [3]. Due to its effectiveness and
its fast learning process, the ELM network has been widely
adopted in many classification problems, including human ac-
tion recognition [4, 5, 6, 7, 8, 9, 10]

Despite its success in many classification problems, the
ability of the original ELM algorithm to calculate the output
weights is limited due to the fact that the network hidden layer
output matrix is, usually, singular. In order to address this is-
sue, the Effective ELM (EELM) algorithm has been proposed
in [11], where the strictly diagonally dominant criterion for
nonsingular matrices is exploited, in order to choose proper
network input weights and bias values. However, the EELM
algorithm has been designed only for a special case of SLFN
networks employing Gaussian Radial Basis Functions (RBF)
for the input layer neurons. In [12], an optimization-based
regularized version of the ELM algorithm (ORELM) aim-
ing at both overcoming the full rank assumption for the net-
work hidden layer output matrix and at enhancing the gener-
alization properties of the ELM algorithm has been proposed.
ORELM has been evaluated on a large number of classifica-
tion problems providing very satisfactory classification per-
formance.

By using a sufficiently large number of hidden layer neu-
rons, the ELM classification scheme, when approached from
a Discriminant Learning point of view, can be considered as
a learning process formed by two processing steps. The first
step corresponds to a mapping process of the input space to
a high-dimensional feature space preserving some properties
of interest for the training data. In the second step, an opti-
mization scheme is employed for the determination of a linear
projection of the high-dimensional data to a low-dimensional
feature space determined by the network target vectors, where
classification is performed by a linear classifier. Based on this
observation, the ORELM algorithm has been extended in or-
der to incorporate discriminative criteria in its optimization
process [13]. Specifically, it has been shown that the incorpo-
ration of the within-class scatter in the optimization process
followed for the calculation of the network output weights in-
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creased the ELM network performance. In this paper, we fol-
low this line of work and propose an extension of the ORELM
algorithm which exploits the training data dispersion in the
ORELM optimization process. The proposed Minimum Vari-
ance ELM (MVELM) algorithm aims at minimizing both the
network output weights norm and the dispersion of the train-
ing data in the projection space.

We evaluate the proposed MVELM network in human
action recognition by employing the Bag-of-Words (BoW)-
based video representation and we compare its performance
with that of ORELM [12] and MCVELM [13] networks. We
also compare the performance of the proposed MVELM net-
work with that of the weighted kernel Support Vector Ma-
chine (kSVM) classifier [14, 15], which has been widely used
in human action recognition. Finally, we show that the χ2

kernel [16], which is the state-of-the-art metric for non-linear
Bag of Words (BoW)-based action classification can be em-
ployed for ELM-based SLFN network training.

The paper is structured as follows. In Section 2 we de-
scribe the proposed MVELM algorithm for SLFN network
training. Section 3 presents experiments conducted in order
to evaluate its performance. Finally, conclusions are drawn in
Section 4.

2. THE PROPOSED MINIMUM VARIANCE ELM

The proposed MVELM network is used for supervised clas-
sification. Let us denote by {xi, ci}, i = 1, . . . , N a set of
N vectors xi ∈ RD followed by class labels ci ∈ {1, . . . , C}.
We would like to employ them in order to train a SLFN net-
work. Such a network consists of D input (equal to the di-
mensionality of xi), L hidden and C output (equal to the
number of classes involved in the classification problem) neu-
rons. The number of hidden layer neurons is usually selected
to be much greater than the number of classes [12, 13], i.e.,
L ≫ C.

The network target vectors ti = [ti1, ..., tiC ]
T , each

corresponding to a training vector xi, are set to tik = 1
for vectors belonging to class k, i.e., when ci = k, and to
tik = −1 otherwise. Similarly to ELM, the network in-
put weights Win ∈ RD×L and the hidden layer bias values
b ∈ RL are randomly assigned, while the network output
weights Wout ∈ RL×C are analytically calculated. Let us
denote by vj the j-th column of Win, by wk the k-th row
of Wout and by wkj the j-th element of wk. For a given
activation function for the network hidden layer Φ(·) and by
using a linear activation function for the network output layer,
the output oi = [o1, . . . , oC ]

T of the network corresponding
to xi is calculated by:

oik =
L∑

j=1

wkj Φ(vj , bj ,xi), k = 1, ..., C. (1)

It has been shown [12] that, several activation functions
Φ(·) can be used for the calculation of the network hidden

layer outputs, like the sigmoid, sine, Gaussian, hard-limiting
and Radial Basis Functions (RBF). In our experiments we em-
ploy the χ2 distance function, as will be described in Section
3. By storing the network hidden layer outputs corresponding
to the training vectors xi, i = 1, . . . , N in a matrix Φ:

Φ =

 Φ(v1, b1,x1) · · · Φ(v1, b1,xN )

· · ·
. . . · · ·

Φ(vL, bL,x1) · · · Φ(vL, bL,xN )

 , (2)

equation (1) can be expressed in a matrix form as O =
WT

outΦ.
By allowing small training errors and trying to minimize

both the norm of the network output weights and the variance
of the training vectors in the projection space, Wout can be
calculated by solving the following optimization problem:

Minimize: J = ∥S
1
2
T Wout∥2F + λ

N∑
i=1

∥ξi∥
2
2 (3)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (4)

where ξi ∈ RC is the error vector corresponding to xi and
λ is a parameter denoting the importance of the training error
in the optimization problem. ϕi is the i-th column of Φ, i.e.,
the hidden layer output corresponding xi. That is, ϕi is the
representation of xi in RL.

In (3), ST is a matrix denoting the dispersion of the train-
ing vectors in RL. We have employed the total scatter matrix
of the training vectors in RL to this end, defined by:

ST =
N∑
i=1

(ϕi − µ)(ϕi − µ)T , (5)

where µ ∈ RL is the mean vector of the entire training set in
RL, i.e., µ = 1

N

∑N
i=1 ϕi.

By analyzing (3) we obtain:

J = ∥S
1
2

TWout∥2F + λ
N∑
i=1

∥ξi∥22

= Tr

(
WT

outSTWout

)
+ λ

N∑
i=1

∥WT
outϕi − ti∥22

=
N∑
i=1

((
WT

outϕi −WT
outµ

)T(
WT

outϕi −WT
outµ

))

+ λ
N∑
i=1

∥WT
outϕi − ti∥22

=

N∑
i=1

(
∥oi − o∥22 + λ∥oi − ti∥22

)
, (6)

where o = WT
outµ = 1

N

∑N
i=1 W

T
outϕi is the mean network

output of the entire training set. That is, the minimization of
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J leads to the determination of the network output weights
Wout which provide a compromise between the training vec-
tors dispersion in the network output space RC and the net-
work training error, according to the regularization parameter
λ.

By substituting (4) in J (3) and solving for ϑJ
ϑWout

= 0,
Wout is given by:

Wout =

(
ΦΦT +

1

λ
ST

)−1

ΦTT . (7)

It should be noted here that the calculation of the training vec-
tors dispersion in the network hidden layer space RL, rather
than in the input space RD, has the advantage that nonlinear
relationships between the training vectors xi can be exploited.

After the determination of the network output weights
Wout, a test vector xt can be introduced to the trained net-
work and be classified to the class corresponding to the
maximal network output:

ct = argmax
k

otk, k = 1, . . . , C. (8)

3. EXPERIMENTS

In this section we present experiments conducted in order to
evaluate the performance of the proposed MVELM network.
We have employed two publicly available action recognition
datasets, namely the Hollywood2 and the Olympic Sports
datasets. As a baseline approach we use the state-of-the-art
method proposed in [15, 17]: we employ the BoW-based
video representation by using HOG, HOF and MBH descrip-
tors evaluated on the trajectories of densely sampled interest
points. Classification is performed by employing a kernel
SVM classifier and the χ2 kernel [16].

For the ELM-based classification schemes, we have also
employed the χ2 distance function:

Φ(xi,vj) = exp

(
1

2A

D∑
d=1

(xid − vjd)
2

xid + vjd

)
, (9)

where A is a parameter used to scale the χ2 distance between
the training vector xi and network input weight vector vj . We
set the value of A equal to the mean χ2 distance between the
network hidden weights. Here it should be noted that, since
χ2 distance is used for a histogram-based data representation,
the input weight vectors should be formed by positive values
and should be normalized in order to have unit l1 norm.

In the case of ELM-based classification, multiple descrip-
tors are combined by using the network output sum [18, 19]:

ot =
∑
n

on
t , (10)

where on
i is the network output for descriptor n.

Regarding the optimal value of the regularization param-
eter λ used in all the ELM-based classification schemes, as
well as in the kSVM classifier, it has been determined by fol-
lowing a linear search strategy. That is, for each classifier,
multiple experiments have been performed by employing dif-
ferent parameter values (λ = 10r, r = −6, . . . , 6) and the
best performance is reported. The number of hidden layer
neurons has been set equal to L = 1000 for all the ELM-based
classification schemes, which has been shown to provide sat-
isfactory performance in many classification problems [12].

In the following, we describe the datasets and evaluation
measures used in our experiments. Experimental results are
provided in subsection 3.3.

3.1. The Hollywood2 dataset

The Hollywood2 dataset [20] consists of 1707 videos col-
lected from 69 Hollywood movies. The actions appearing
in the dataset are: answering the phone, driving car, eating,
ghting, getting out of car, hand shaking, hugging, kissing,
running, sitting down, sitting up, and standing up. Example
video frames of the dataset are illustrated in Figure 1. A stan-
dard training-evaluation split is provided in the dataset (823
videos are used for training and performance is measured in
the remaining 884 videos). Training and test videos come
from different movies. The performance is evaluated by com-
puting the average precision (AP) for each action class and
reporting the mean AP over all classes (mAP), as suggested
in [20].

Fig. 1. Video frames of the Hollywood2 dataset depicting
instances of all the twelve actions.

3.2. The Olympic Sports dataset

The Olympic Sports dataset [21] consists of 783 videos which
have been collected from YouTube and annotated using Ama-
zon Mechanical Turk. The actions appearing in the dataset
are: high-jump, long-jump, triple-jump, pole-vault, basket-
ball lay-up, bowling, tennis-serve, platform, discus, hammer,
javelin, shot-put, springboard, snatch, clean-jerk and vault.
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Traj HOG HOF MBHx MBHy Combined
kSVM [15] 60.5 % 63 % 58.7 % 67.4 % 67.7 % 74.1 %
ORELM [12] 59.64 % 66.45 % 58.09 % 67.1 % 69.51 % 74.86 %
MCVELM [13] 60.56 % 66.84% 58.74% 68.87 % 71.06 % 76.74 %

MVELM 60.83% 66.51 % 57.85 % 71.12% 73.68% 78.61%

Table 1. Performance (mAP) on the Olympic Sports dataset.

Traj HOG HOF MBHx MBHy Combined
kSVM [15] 47.8 % 41.2 % 50.3% 48.5% 52.9% 58.2 %
ORELM [12] 46.95 % 40.95 % 48.68 % 45.98 % 50.21 % 57.65 %
MCVELM [13] 47.32 % 42.03% 49.45 % 47.8 % 51.33 % 58.34 %

MVELM 48.12% 41.61 % 49.55 % 46.91 % 51.52 % 58.93%

Table 2. Performance (mAP) on the Hollywood2 dataset.

Example video frames of the dataset are illustrated in Fig-
ure 2. A standard training-evaluation split is provided in the
dataset (649 videos are used for training and performance is
measured in the remaining 134 videos). The performance is
evaluated by computing the mean Average Precision (mAP)
over all classes, as suggested in [21].

Fig. 2. Video frames of the Olympic Sports dataset.

3.3. Experimental Results

Tables 1, 2 illustrate the mean average precision values ob-
tained by applying the four classification schemes on the
Olympic Sports and the Hollywood2 datasets, respectively.
As can be seen in these Tables, the performance of the ELM-
based classification schemes is comparable with that of the
kernel SVM classifier. Specifically, it can be seen that in the
Olympic Sports dataset, the ORELM network outperforms

kSVM in three, out of six, cases. The proposed MVELM
algorithm, as well as the MCVELM algorithm, increase the
performance of the ELM network. The MCVELM network
outperforms all the other classification schemes in two cases,
while the proposed MVELM network provides the highest
performance in four cases. Overall, the proposed MVELM
network provides the best performance, equal to 78.61% by
using a combination of the five descriptors.

In the Hollywood2 dataset, kSVM clearly outperforms
the ORELM in all the cases. Similar to the Olympic Sports
case, the MCVELM and the proposed MVELM algorithms
increase the performance of the ELM network. It can be seen
that the proposed MVELM network outperforms the kSVM
classifier in three, out of six, cases. Overall, the proposed
MVELM network provides the best performance, equal to
58.93%, by using a combination of the five descriptors.

4. CONCLUSIONS
In this paper we proposed an algorithm for Single-hidden
Layer Feedforward Neural networks training. The proposed
algorithm extends the Extreme Learning Machine algorithm
in order to exploit the dispersion of the training data, rep-
resented in the network hidden layer space, in its optimiza-
tion process. The performance of the proposed Minimum
Variance Extreme Learning Machine algorithm has been
evaluated in human action recognition by employing the
BoW-based video representation and the χ2 kernel function,
where it has been found to outperform other ELM-based
classification schemes and the kernel SVM classifier.
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