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ABSTRACT

This paper follows the recent advances in speech recognition which
recommend replacing the standard hybrid GMM/HMM approach by
deep neural architectures. These models were shown to drastically
improve recognition performances, due to their ability to capture the
underlying structure of data. However, they remain particularly com-
plex since the entire temporal context of a given phoneme is learned
with a single model, which must therefore have a very large number
of trainable weights. This work proposes an alternative solution that
splits the temporal context into blocks, each learned with a separate
deep model. We demonstrate that this approach significantly reduces
the number of parameters compared to the classical deep learning
procedure, and obtains better results on the TIMIT dataset, among
the best of state-of-the-art (with a 20.20% PER). We also show that
our approach is able to assimilate data of different nature, ranging
from wide to narrow bandwidth signals.

Index Terms— Speech recognition, neural networks, deep
learning, split temporal context.

1. INTRODUCTION

The use of artificial neural networks (ANNs) for automatic speech
recognition began several decades ago, mainly in hybrid systems
combining ANNs with Hidden Markov Models (HMMs) [1]. The
key idea of such approaches is to train a neural model to estimate
posterior states of the HMM, and thus to compute the acoustic emis-
sion probabilities using Bayes rule. However, despite their early
promise, ANN/HMM systems were surpassed by other hybrid mod-
els combining HMM with Gaussian Mixture Models (GMMs) [2],
which were shown to be more accurate, and can be trained with sev-
eral discriminative and ”easy to implement” techniques.

However, despite these advantages, GMM/HMM approaches
suffer from many drawbacks, especially when dealing with non-
linear modeling problems. Thus, it has long been suspected that
neural models could outperform GMM/HMM approaches, if the
standard one-layer neural architecture was replaced by more com-
plex ones, with many more trainable parameters. Yet, such complex
models are difficult to train, and have serious over-fitting shortcom-
ings. Recent advances in machine learning offered some solutions
to these problems. The first one relies on so-called deep models,
i.e. carefully designed and learned neural architectures with several
hidden layers. With the recent methods based on layer-by-layer
greedy training, such deep architectures can be effectively learned,
which perform extremely well not only on the TIMIT dataset [3] but
also on large vocabulary tasks [4, 5, 6, 7] leading to wide industrial
adoption of deep learning in speech recognition.

Other recent works proposed different solutions, which can be
summarized as reporting the complexity on the design of the neural

system structure rather than increasing the number of trainable pa-
rameters. Indeed, several works found that using hierarchical archi-
tectures, which learn each part of the signal with a different model,
can be beneficial for speech recognition. For example, the TRAP
system [8] proposes to learn temporal segments of feature vectors
corresponding to critical bands spectral densities. A separate neural
classifier is trained with data coming from each critical band, and ob-
tained outputs are then used to feed another neural classifier which
function is to combine all decisions into a final one. Another sim-
ilar approach, called Split Temporal Context (STC) was introduced
by Schwarz et al. [9], and proposes a different hierarchical structure
operating on a shorter temporal context window, and yielding better
results.

Nevertheless, both TRAP and STC systems use simple neural
classifiers with a single hidden layer. In this paper, we propose to
take benefits of the deep architectures high modeling power, by in-
troducing an approach which combines the structural characteristics
of the STC system with the recent deep learning techniques.

The rest of the paper is organized as follows. Section 2 describes
an overview of the proposed model, and the corresponding train-
ing procedure. We present in section 3 experimental results on the
TIMIT [3] and NTIMIT [10] datasets, before concluding and giving
some perspectives of this work in section 4. Finally, section 5 dis-
cusses how the contributions presented in this paper are related to
prior work in the field.

2. PROPOSED APPROACH

2.1. The model

The proposed model is illustrated on Figure 1. It can be seen as
a combination of the STC system of Schwarz et al. [9] with deep
learning techniques [6]. The idea is to take benefits of the ability of
deep models to capture the underlying structure of data, while sim-
plifying the modeling task by operating on temporally short context
windows instead of the long non-split ones.

Our approach consists in three steps: (i) split the long temporal
context into blocks as in the STC system, (ii) model each block with
a separate deep neural network, and (iii) a final step in which a neural
network is trained to merge individual decisions corresponding to
each block.

Concretely, the system operates on a set of B critical-bands cor-
responding to a Fourier transform filter-bank and a long temporal
context of L frames (see Figure 1). The speech contained in the cur-
rent context window is thus encoded in a set of L feature vectors (one
per frame) having B coefficients each, and describing a segment of
temporal evolution of the critical-bands spectral densities.

As mentioned above, the temporal context window is split into
clusters, called STC blocks, with one overlapping frame between
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Fig. 1. Overview of the proposed approach.

each two consecutive blocks. Each STC block undergoes a temporal
weighting step followed by a Discrete Cosine Transform (DCT). As
in [6], obtained vectors are normalized in order to have zero mean
and unit variance. These normalized feature vectors constitute the
representation level on which learning is performed: for each STC
block, a deep neural model (called STC network) is trained to output
a probability distribution over the possible phoneme labels. These
labels correspond to the commonly used HMM-based states repre-
sentation in speech modeling, in which each phoneme is associated
with 3 hidden states. Note that for each training sample, all STC
networks are trained to target the same label: the one correspond-
ing to the central frame of the complete (non-split) temporal context
window.

Obtained outputs are collected from each STC network and con-
catenated to generate a vector which encodes individual decisions
coming from each block. This vector is normalized, as described
previously for STC networks, and used to train another neural net-
work (called merger), which learns to estimate the final posterior
distribution over HMM states, by fusing all decisions. The merger
outputs are thus fed into the Viterbi decoder, as for a classical HMM-
based speech recognition system.

2.2. The training procedure

All deep neural models used in our system are trained with the pro-
cedure described in [6], in which a first generative pre-training step
is followed by a discriminative fine-tuning one. The idea is to replace
the standard random initialization of the network trainable weights
by a better starting point, which is learned directly from the input
data. This initialization has been shown to lead to faster convergence
and to prevent from over-fitting [11].

Note that, in addition to phoneme recognition, this type of train-
ing procedure, which combines unsupervised and supervised learn-
ing, has been widely and successfully used in a variety of other ma-
chine learning problems, ranging from character recognition [12] to
information retrieval [13].

The pre-training step is layer-wise, i.e. it consists in learning
one pair of layers at a time, with the internal states of this pair act-
ing as the data for training the next one. Each learning module (i.e.
a pair of layers) is called a Restricted Boltzmann Machine (RBM):
an undirected graph formed by visible and hidden units, that mod-
els respectively observations and features. Two kinds of RBMs are
used: (i) Gaussian RBMs, i.e. which allows real-valued states for its
visible units, and (ii) binary RBMs, i.e. with only binary units. Con-
cretely, an input Gaussian RBM is first trained with the real-valued
feature vectors. Then, obtained binary hidden units are used as data
for training the next RBM. This is repeated to learn as many pairs
of layers as needed. Note that Gaussian RBMs are used only for the
input layer. Training is performed using the contrastive divergence
algorithm [14]. Once all layers are trained, they are stacked, and an
output layer is added to form the final multi-layer (deep) architec-
ture.

Fine-tuning consists in performing a standard back-propagation
with momentum algorithm, initializing the network with the values
learned during the pre-training step. This allows to slightly adjust
the weights in order to approach the most discriminative weight-
space region. We used the classification error rate per frame as objec-
tive function during this training step. Note that the hole fine-tuning
phase is repeated several times (5 times in our experiments, -see sec-
tion 3-) to refine the HMM states alignment over the phoneme tem-
poral segment (with the first iteration corresponding to an uniform
split into three segments of equal lengths). Note also that only deep
architectures are trained using this two-steps procedure, neural net-
works with only one hidden layer (for example the merger in our
case, as we will see in section 3) are simply trained with a standard
back-propagation with a random initialization.

3. EXPERIMENTAL RESULTS

In this section, we present the experimental results corresponding to
the proposed approach described above. First, we focus on the eval-
uation of the recognition performance of our system when operating
on wide band signals. This will be done using the TIMIT dataset
[3]. Then, we will investigate the possibility of using our approach
to process data in both narrow and wide bands.

3.1. Experiments on the TIMIT dataset

The TIMIT Acoustic-Phonetic Continuous Speech Corpus [3] is a
standard dataset used for speech recognition. It consists of 630
speakers reading 10 sentences each. These sentences are phoneti-
cally rich, and represent 8 American English dialects. We used the
standard training set (corresponding to 462 speakers, after remov-
ing the speaker calibration sentences) and a separate validation set
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to: (i) tune the hyper-parameters, and (ii) perform the early stopping
procedure (i.e. stopping the training algorithm before over-fitting).

Results are computed using the standard core test set, which has
no overlap with the training and validation sets. The evaluation is
performed on the phone level (with the standard CMU/MIT phone
mapping [15]), based on the supplied phone transcription, and using
the Phone Error Rate (PER) metric. The optimal number of sub-
stitutions, deletions and insertions during the dynamic programming
alignment was tuned on the validation set.

In all our experiments, the number of critical-bands B was set to
23. Note that we have also experimented the use of a higher number
of coefficients per frame (typically 40, with their first and second
temporal derivatives, as recommended in [6]), but we observed that
this increases considerably the complexity of the model (since STC
networks would have larger input layers) without improving its per-
formance.

We used a long temporal context corresponding to L = 31
frames: the central actual frame to be recognized, 15 frames in past
and 15 in future. The input of our system (before splitting the tempo-
ral context and applying temporal windowing and DCT) is therefore
a vector containing 713 values (31 frames × 23 coefficients).

Regarding the training, for both pre-training and fine-tuning
steps we used the Neural Network Trainer TNet library, which
proposes a CUDA GPGPU implementation of the mini-batch back-
propagation and the contrastive divergence algorithms. The training
was performed using these parameters:

- For the pre-training step: learning rates of 5 × 10−3 and
8 × 10−2 respectively for the Gaussian and binary RBMs,
a momentum of 0.9 (except for the 5 first epochs, which use
no momentum) and a mini-batch size of 128.

- For the fine-tuning step: an initial learning rate of 8 × 10−3

(which is halved every epoch for which the validation PER
decreases by less than 0.5), a momentum of 0.5 and a mini-
batch size of 512.

Note that the pre-training phase was performed using only a
small subset of the training dataset, which was shown to consid-
erably reduce the computation time without affecting performance.
Note also that an early stopping procedure was used during fine-
tuning which consists in interrupting the training when the validation
PER decreases by less than 0.1 after halving the learning rate.

We have performed a set of experiments varying the different
architectural parameters of our recognition system in order to select
the optimal ones. We have experimented: (i) three types of temporal
windows (Hamming, rectangular and the 0.24× 1.1x windows), (ii)
applying or not a DCT which keeps 5 coefficients per STC block,
(iii) varying the number of STC blocks (2, 3 or 5) and (iv) sev-
eral STC networks architectures. Concerning the latter, deep models
(with more than one layer) were pre-trained as described in section
2, while architectures with only one layer were directly trained with
back-propagation algorithm. Regarding the merger network, it cor-
responds to a one layer architecture with 1500 neurons for all the
experiments. Other merger architectures (including deep ones) were
also tested with no performance improvement.

We report on Table 1 obtained results, corresponding to the PER
on the test core set obtained in the last (fifth) iteration of the fine-
tuning step. The best model, yielding a PER of 20.20, corresponds
to a split of the temporal context into 5 blocks, with a three-layer
deep architecture for each STC block. The best results are obtained
with a 5 coefficients DCT, and without temporal windowing, which
is consistent with the observations made by Schwarz et al. in [9].

Temporal DCT #STC STC Networks PER
window size blocks architecture (%)

Hamming 5 2 1500× 1 22.73
Hamming 5 3 1500× 1 22.40
Hamming 5 5 1500× 1 21.81
0.24× 1.1x 5 5 1500× 1 21.82
Rectangular 5 5 1500× 1 21.70
Rectangular 5 5 200× 3 20.71
Rectangular 5 5 1000× 3 20.38
Rectangular 5 5 500× 3 20.20
Rectangular − 5 500× 3 20.88

Table 1. Evaluation of the obtained PER on the TIMIT test set for
different architectural parameters of the proposed model. PER val-
ues correspond to the last (fifth) iteration of the fine-tuning step. For
the STC networks architecture, the notation n× l emphasizes an ar-
chitecture of l hidden layers with n neurons per layer.

Fig. 2. Detailed results per iteration obtained by the proposed model
on the TIMIT corpus. The best result (corresponding to a PER of
20.20% on the test core set) is obtained in the fifth iteration.

We depict in Figure 2 the detailed results of our best architecture
(i.e. the PER values per iteration obtained on the training, validation
and test sets). One can observe that the HMM states realignment pro-
cedure (performed from the second iteration) significantly improves
performances compared to the first iteration for which each phoneme
temporal segment is split uniformly. The best result, corresponding
to the best PER on the validation set, is obtained for the last (fifth
iteration).

The architecture obtaining the best results contains approxi-
mately 4.18 × 106 trainable weights (about 620.000 for each STC
network, and 1.08 × 106 for the merger). Table 2 shows the com-
putation time (more precisely the number of epochs required for
convergence, and the computation time of each epoch) needed to
perform the last iteration of the fine-tuning step for this architecture
using a machine with a quad-core 3.6 GHz CPU and a NVIDIA
Quadro 600 GPU.

Regarding the pre-training step, it took about 11 minutes for
each STC block using the same machine. Thus, the complete train-
ing scheme (i.e. pre-training of each STC network, followed by 5
iterations of fine-tuning) needs approximately 10 hours of computa-
tion. The testing phase takes a lot less time since all the TIMIT cor-
pus (including training, validation and test sets) is decoded in about
8 minutes.

In order to evaluate the relevance of our results, we show on
Table 3 a comparison with the state-of-the-art on the TIMIT dataset.
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Network #epochs Time / epoch
STC network 1 18
STC network 2 18
STC network 3 19 58 sec
STC network 4 17
STC network 5 13

Merger 18 1 min 15 sec

Table 2. Computation time corresponding to the last (fifth) iteration
of the fine-tuning training step.

We also report the number of trainable parameters corresponding to
each approach to evaluate their complexity. Table 3 shows that our
model obtains performances among the best of related work. More
particularly, we obtain better results than the STC [9] and the deep
learning [6] approaches, showing that the combination of both of
them improves recognition performances. Furthermore, our model
is approximately 9 times less complex than the one operating on a
non-split temporal context, as described by Mohamed et al. in [6].

Method #param. PER (%)
CRF [16] 4500 34.77

Augmented CRF [17] 0.02 M 27.30
CD-HMM [18] 4.00 M 26.60

Recurrent NN [19] 0.10 M 26.10
HTM [20] 0.01 M 24.83
STC [9] 1.50 M 21.48

RBM deep model [6] 37.7 M 20.70
mcRBM deep model [5] 20.9 M 20.50

STC + RBM deep models (ours) 4.18 M 20.20
Deep ConvNets NN [21] 4.03 M 20.07

Deep ConvNets NN + pooling [22] - 18.70
Deep LSTM recurrent NN [23] 4.30 M 17.70

Table 3. Comparison of obtained results on the TIMIT test set with
related work.

Up to our knowledge, only the recent works by Abdel-Hamid
et al. [21], Deng et al. [22] and Graves et al. [23], based respec-
tively on deep ConvNets (with or without pooling) and LSTM recur-
rent neural networks, obtain better results than ours. For the latter,
The outstanding performances can be explained by the demonstrated
ability of the LSTM model to deal with very long temporal context
(the entire sequence vs 31 frames used in this work). Note that al-
most all approaches mentioned in Table 3 use a language model as
a post-processing in order to improve the performance of their sys-
tems (for example a 0.34 point improvement in [9]), which is not our
case. Another interesting observation is that all approaches obtain-
ing a PER inferior to 21 use deep neural architectures.

3.2. Experiments on the NTIMIT dataset

We evaluate in this subsection the performance of the proposed
model described above on wide and narrow (telephonic) band-
widths. The aim is to be able to model both types of signals with a
single recognition system, which is particularly interesting (mainly
in an industrial context) and has a high applicative potential.

As in [24, 25], the model was trained/tested using two datasets:
the TIMIT dataset for the wide bandwidth, and the NTIMIT (Net-
work TIMIT) dataset [10] for the narrow bandwidth. The latter was
collected by transmitting the TIMIT corpus over the telephone net-
work. The experiment consists in training the model with the two

datasets together or with each of them separately, and then test it on
both datasets. Corresponding results, obtained using the same train-
ing parameters and evaluation protocol described above, are reported
on Table 4.

Training dataset Test on TIMIT Test on NTIMIT
TIMIT + NTIMIT 20.37 29.55

TIMIT 20.20 68.20
NTIMIT 32.97 31.72

Table 4. Obtained PERs on wide (TIMIT) and narrow (NTIMIT)
bandwidth test sets using mixed bandwidths training data.

Table 4 shows that training the model with both datasets leads
to better results on NTIMIT (with 2.17 points of improvement), and
slightly worse results on TIMIT (with 0.17 point of deterioration).
This can be explained by the fact that wide bandwidth signals contain
richer information, which permits to remove some confusions. On
the other side, adding narrow bandwidth data during the training in-
troduces noise, which reduces the recognition performance. Finally,
the results for each type of signals are still satisfactory and show that
the proposed model can assimilate data from different nature.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented a neural approach for acoustic mod-
eling in speech recognition, which combines the hierarchical STC
method with deep learning techniques. We have demonstrated that
using several ”small” deep architectures to model short temporal
windows is significantly less complex and gives better results than
learning the entire context with a single ”huge” model. Experimen-
tal results, obtained on the TIMIT dataset, confirm the high perfor-
mance of our approach since it achieves results among the best of
related work (with a PER of 20.20% on the test set). We have also
demonstrated that the hierarchical nature of our model enables it to
assimilate wide and narrow bandwidths signals, which is particularly
interesting for a wide range of applications.

Future work will address the application of our model to very
large corpus. We are currently performing a set of experiments
on a french corpus containing about 120 hours of wide and nar-
row bandwidths speech data collected from 1000 speakers. Prelimi-
nary results are quite satisfactory since they correspond to a PER of
12.53%.

5. RELATION TO PRIOR WORK

The work presented in this paper focused on neural-based speech
recognition systems, and more precisely on those having an hier-
archical structure, i.e. which model the speech by a hierarchy of
networks, each one for a specific part of the signal.

The proposed approach is closely related to several prior works
which have addressed this issue. For example the TRAP model, in-
troduced by Hermansky and Sharma [8] (and its different variants
[26, 27]), or the STC system by Schwarz et al. [9], which obtains
better results with a shorter temporal context. Our model extends
the work of Schwarz et al. [9] by incorporating deep learning tech-
niques, taking benefits from the recent advances in this field [6] in
order to boost recognition performances.

Thus, we propose to use simultaneously two types of hierarchi-
cal modeling: (i) the block-based processing of the speech signal
proposed by the STC system, and (ii) the layer-wise representation
of the information using deep architectures.
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