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ABSTRACT

In this paper, we investigate phone sequence modeling with recurrent
neural networks in the context of speech recognition. We introduce
a hybrid architecture that combines a phonetic model with an arbi-
trary frame-level acoustic model and we propose efficient algorithms
for training, decoding and sequence alignment. We evaluate the ad-
vantage of our phonetic model on the TIMIT and Switchboard-mini
datasets in complementarity to a powerful context-dependent deep
neural network (DNN) acoustic classifier and a higher-level 3-gram
language model. Consistent improvements of 2–10% in phone accu-
racy and 3% in word error rate suggest that our approach can readily
replace HMMs in current state-of-the-art systems.

Index Terms— Recurrent neural network, phonetic model,
speech recognition

1. INTRODUCTION

Automatic speech recognition is an active area of research in the
signal processing and machine learning communities [1]. Existing
approaches are commonly based on three fundamental modules: (1)
an acoustic model that focuses on the discriminative aspect of the
audio signal, (2) a phonetic model that attempts to describe the tem-
poral dependencies associated with the sequence of phone labels,
and (3) a language model that describes the higher-level dependen-
cies between words and sentences. In this work, we wish to replace
the popular hidden Markov model (HMM) approach with a more
powerful neural network-based phonetic model.

Recurrent neural networks (RNN) [2] are powerful dynamical
systems that incorporate an internal memory, or hidden state, rep-
resented by a self-connected layer of neurons. This property makes
them well suited to model temporal sequences, such as frames in a
magnitude spectrogram or phone labels in a spoken utterance, by be-
ing trained to predict the output at the next time step given the pre-
vious ones. RNNs are completely general in that in principle they
can describe arbitrarily complex long-term temporal dependencies,
which made them very successful in music and language applica-
tions [3, 4, 5].

While RNN-based language models significantly surpass pop-
ular alternatives like HMMs, it is not immediately obvious how to
combine the acoustic and phonetic models under a single training
objective. The simple approach of multiplying the predictions of
both models before renormalizing as in a maximum-entropy Markov
chain [6] often results in the so-called label bias problem where the
symbolic information overwhelms the acoustic information in low-
entropy sequences with frequently reoccuring symbols [7]. Several
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attempts have been made to reduce those difficulties, such as with
conditional random fields [7], regularization of the symbolic and
acoustic sources [8], by increasing the entropy per time step with
a lower temporal resolution [9], modeling unaligned phonetic se-
quences with an implicit exponential duration model [10, 11], or
with the popular approach of stacking an HMM on top of a frame-
level classifier (e.g. [12]). In this paper, we propose an alternative
approach that enforces a proper weighting of the acoustic and sym-
bolic predictors and allows the probability flow of a candidate solu-
tion to vary according to the acoustic observations [7]. Our hybrid
architecture is a generative model that generalizes the HMM and
that can be trained similarly following the expectation-maximization
principle while exploiting the predictive power of RNNs in describ-
ing complex temporal dependencies. An advantage of our design not
present in [11] is the possibility of leveraging arbitrary frame-level
acoustic classifiers such as a DNN trained with dropout or advanced
optimization techniques [13]. We also propose efficient inference
algorithms for decoding and optimal sequence alignment inspired
from Viterbi decoding. Finally, we investigate the extent to which
phone sequence modeling is relevant in complementarity to power-
ful context-dependent acoustic classifiers and higher-level language
models.

The remainder of the paper is organized as follows. In sections 2
and 3 we introduce the RNN architecture and our hybrid phone se-
quence model. In sections 4 and 5 we detail our decoding and align-
ment algorithms. Finally, we present our methodology and results in
section 6.

2. RECURRENT NEURAL NETWORKS

The RNN formally defines the distribution of the output sequence
z ≡ {z(t) ∈ C, t ≤ T} of length T , where C is the dictionary of
possible phone labels (|C| = N ):

P (z) =

T∏
t=1

P (z(t)|A(t)) (1)

where A(t) ≡ {z(τ)|τ < t} is the sequence history at time t, and
P (z(t)|A(t)) is the conditional probability of observing z(t) accord-
ing to the model, defined below in equation (5).

A single-layer RNN with hidden units h(t) is defined by its re-
currence relation:

h(t) = σ(Wzhz
(t−1) +Whhh

(t−1) + bh) (2)

where the indices of weight matrices and bias vectors have obvious
meanings.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5454



The prediction y(t) is obtained from the hidden units at the cur-
rent time step h(t) and the previous output z(t−1):

y(t) = s(Whzh
(t) +Wzzz

(t−1) + bz) (3)

where the Wzz matrix is useful to explicitly disallow certain state
transitions by setting the corresponding entries to very large negative
values, and s(a) is the softmax function of an activation vector a:

(s(a))j ≡
exp(aj)∑N

j′=1 exp(aj′)
, (4)

and should be as close as possible to the target vector z(t). In the
case of multiclass classification problems such as frame-level phone
recognition, the target is a one-hot vector and the likelihood of an
observation is given by the dot product:

P (z(t)|A(t)) = z(t) · y(t). (5)

The RNN model can be trained by maximum likelihood with the
cross-entropy cost:

L(z) = −
T∑
t=1

log(z(t) · y(t)) (6)

where the gradient with respect to the model parameters is obtained
by backpropagation through time (BPTT) [2].

While in principle a properly trained RNN can describe arbitrar-
ily complex temporal dependencies at multiple time scales, in prac-
tice gradient-based training suffers from various pathologies [14].
Several strategies can be used to help reduce these difficulties in-
cluding gradient clipping, leaky integration, sparsity and Nesterov
momentum [5].

3. PHONE SEQUENCE MODELING

In this section, we generalize the popular technique of superposing
an HMM to an acoustic model by replacing the HMM with an arbi-
trary phonetic model. This will allow to exploit the power of RNNs
for phone modeling while providing a principled way to combine the
two models.

Our hybrid acoustic-phonetic sequence model is a graphical
model composed of an underlying phone sequence z:

P (z(t)|{x(τ), τ < t},A(t)) = P (z(t)|A(t)) (7)

and an acoustic sequence x emitted given the phone sequence:

P (x(t)|{x(τ), τ 6= t}, z) = P (x(t)|z(t)). (8)

The emission probability (8) can be reformulated using Bayes’
rule [15]:

P (x(t)|z(t)) ∝ P (z(t)|x(t))

P (z(t))
(9)

where P (z(t)|x(t)) is the output of an acoustic classifier, P (z(t)) is
the marginal distribution of phones and constant terms given x have
been removed. This adjustment is referred to as scaled likelihood
estimation in [12].

The next-step phone sequence distribution has a general expres-
sion in the right-hand side of equation (7) to accomodate different
phonetic models. For an HMM, this distribution depends only on
z(t−1):

P (z(t) = i|A(t)) =

{
Tz(t−1),i if t > 0

πi if t = 0
(10)

where Tj,i is the row-normalized transition matrix and πi the initial
occupancy of phone i. In our case, we will replace (10) with the
distribution of an RNN (eq. 5) which depends on the full sequence
history A(t).

By combining equations (7)-(9), we obtain the conditional dis-
tribution over phones z given the input x:

P (z|x) =

T∏
t=1

P (z(t)|x(t),A(t)) (11)

P (z(t)|x(t),A(t)) ∝ P (z(t)|x(t))

P (z(t))
P (z(t)|A(t)) (12)

which can be interpreted as the output of the hybrid model.
As argued previously [16], a limitation of the hybrid model oc-

curs when the acoustic model has access to contextual information
when predicting z(t), either directly in the form of an input window
around x(t) or indirectly via the hidden state of an RNN. When the
input includes information from neighboring frames, the indepen-
dence assumption (8) breaks down, making it difficult to combine
the two models in equation (12). Intuitively, multiplying the pre-
dictions P (z(t)|x(t)) and P (z(t)|A(t)) to estimate the joint distri-
bution will count certain factors twice since both models have been
trained separately. Note that the marginals P (z(t)) are counted only
once with scaled likelihood estimation (eq. 9), but it is reasonable to
expect that certain temporal dependencies will be captured by both
models. In our experiments, we found that this conceptual difficulty
surprisingly did not prevent good performance. Furthermore, the al-
ternative approach of multiplying the two predictions and renormal-
izing in order to train the system jointly [17, 10, 11] suffered heavily
from the label bias problem, and we found it crucial not to renormal-
ize the two distributions to achieve good performance. Note that the
transducer approach in [11] circumvents the label bias problem by
modeling unaligned phone sequences with an implicit exponential
duration model.

During training, we wish to maximize the log-likelihood logP (x, z)
of training example pairs x, z. It is easy to see from equations (11)
and (12) that a stochastic gradient ascent update involves terms asso-
ciated with the phonetic and acoustic models that can be computed
separately:

∂ logP (x, z)

∂Θa
=

∂

∂Θa

T∑
t=1

logP (z(t)|x(t)) (13)

∂ logP (x, z)

∂Θp
=

∂

∂Θp

T∑
t=1

logP (z(t)|A(t)) (14)

where Θa,Θp denote the parameters of the acoustic and phonetic
models respectively.

When only unaligned phone sequences z̄ ≡ {z̄(u), u ≤ U}
of length U are available during training, the hard expectation-
maximization (EM) approach can be adopted, by regarding the
alignments as missing data. After initializing the aligned sequences
z from a flat start or another existing method, we alternate updates
to the model parameters (M step) and to the estimated alignments
given the current parameters (E step) as described in section 5.
Both of these steps are guaranteed to increase the training objective
logP (x, z) unless a local maximum is already reached.

4. DECODING

In our architecture, the phonetic model implicitly ties z(t) to its
history A(t) and encourages coherence between successive output
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frames, and temporal smoothing in particular. At test time, pre-
dicting one time step z(t) requires the knowledge of the previous
decisions on z(τ) (for τ < t) which are yet uncertain (not chosen
optimally), and proceeding in a greedy chronological manner does
not necessarily yield configurations that maximize the likelihood of
the complete sequence. We rather favor a global search approach
analogous to the Viterbi algorithm for discrete-state HMMs to infer
the sequence z∗ ≡ {z(t)∗|t ≤ T} with maximal probability given
the input.

For HMM phonetic models, the distribution in equation (12) be-
comes:

P (z(t)|x(t),A(t)) ∝ P (z(t)|x(t))

P (z(t))
P (z(t)|z(t−1)). (15)

Since it depends only on z(t−1), it is easy to derive a recurrence
relation to optimize z∗ by dynamic programming, giving rise to the
well-known Viterbi algorithm.

The inference algorithm we propose for RNN phonetic models
is based on a dynamic programming-like (DP) pruned beam search
introduced in [9]. Beam search is a breadth-first tree search where
only the w most promising paths (or nodes) at depth t are kept for
future examination. In our case, a node at depth t corresponds to
a subsequence of length t, and all descendants of that node are as-
sumed to share the same sequence history A(t+1). Note that w = 1
reduces to a greedy search, and w = NT corresponds to an exhaus-
tive breadth-first search.

A pathological condition that sometimes occurs with beam
search is the exponential duplication of highly likely quasi-identical
paths differing only at a few time steps, that quickly saturate beam
width with essentially useless variations. A natural extension to
beam search is to make a better use of the available width w via
pruning. A particularly efficient pruning strategy is to consider only
the most promising path out of all partial paths with identical z(t)

when making a decision at time t. This leads to the solution of
keeping track of the N most likely paths arriving at each possible
label j ∈ C with the recurrence relations:

l
(t)
j = l

(t−1)

k
(t)
j

+ P (z(t) = j|x, s(t−1)

k
(t)
j

) (16)

s
(t)
j = {s(t−1)

k
(t)
j

, j} (17)

with k(t)
j ≡

N
argmax
k=1

[
l
(t−1)
k + P (z(t) = j|x, s(t−1)

k )
]

(18)

and initial conditions l(0)
j = 0, s

(0)
j = {}, where the variables

l
(t)
j , s

(t)
j represent respectively the maximal cumulative log-likelihood

and the associated partial output sequence ending with label j at time
t [9]. In our case, P (z(t) = j|x, s(t−1)

k ) is given by equation (12):
since the acoustic prediction and the marginal distribution do not
depend on A(t), we can compute those contributions in advance.

It should not be misconstrued that the algorithm is limited to “lo-
cal” or greedy decisions for two reasons: (1) the complete sequence
history A(t) is relevant for the prediction y(t) at time t, and (2) a
decision z(t)∗ at time t can be affected by an observation x(t+δt)

arbitrarily far in the future via backtracking, analogously to Viterbi
decoding.

5. OPTIMAL ALIGNMENT

In this section, we propose an algorithm to search for the aligned
phone sequence z ≡ {z(t)|t ≤ T}with maximal probability P (z|x)

according to a trained model (eq. 11), that is consistent with a given
unaligned phone sequence z̄ ≡ {z̄(u)|u ≤ U} where U < T .
The sequences z and z̄ are said to be consistent if there exists an
alignment a ≡ {ut|t ≤ T} satisfying u1 = 1, uT = U and
ut − ut−1 ∈ {0, 1} for which z(t) = z̄(ut),∀t ≤ T . The objective
is to find the optimal alignment a∗.

Since an exact solution is intractable in the general case that the
predictions fully depend on the sequence history, we hypothesize
that it is sufficient to consider only the most promising path out of
all partial paths with identical ut when making a decision at time t.1

Under this assumption, any subsequence {u∗t |t ≤ T ′} of the global
optimum {u∗t |t ≤ T} ending at time T ′ < T must also be optimal
under the constraint uT ′ = u∗T ′ . This last constraint is necessary to
avoid a greedy solution. Setting T ′ = T − 1 leads to the DP-like
solution of keeping track of the (at most)U most likely paths arriving
at each possible index u, max(1, U −T + t) ≤ u ≤ min(U, t) with
the recurrence relations:

l(t)u = l
(t−1)

k
(t)
u

+ P (z(t) = z̄(u)|x, s(t−1)

k
(t)
u

) (19)

s(t)
u = {s(t−1)

k
(t)
u

, z̄(u)} (20)

with k(t)
u ≡ argmax

k∈{u−1,u}

[
l
(t−1)
k + P (z(t) = z̄(u)|x, s(t−1)

k )
]

(21)

and initial conditions l(0)
u = 0, s

(0)
u = {}, where the variables

l
(t)
j , s

(t)
j are defined similarly as in equations (16)-(18). The opti-

mal aligned sequence is then given by z∗ ' s
(T )
U . This algorithm

has a time complexity O(TU) independent of N .
Since finding an optimal alignment in the inner loop of an EM

iteration can be prohibitive, we can further postulate that the optimal
alignment a∗ is close to an approximate alignment a′ that can be
computed much more cheaply. Typically, a′ would be obtained by
an acoustic model whose predictions depend only on x, eliminating
the need to maintain the hidden states of multiple RNNs. Assuming
that the distance between a∗ and a′ is δ:

|a∗, a′| ≡ T
max
t=1
|u∗t − u′t| = δ, (22)

the range of plausible values for u can be significantly reduced in
equations (19)-(21). Values of δ as low as 2–4 were found to work
well in practice, producing identical alignments in a majority of
cases with less than 10% of the computation.

6. EXPERIMENTS

In this section, we evaluate the performance of our RNN phonetic
model and hybrid training procedure relatively to a baseline HMM
system. We use two datasets to evaluate our method: the TIMIT
corpus and the 30 hour “mini-train” subset of the Switchboard cor-
pus. We report phone accuracy on the TIMIT data, which includes
expertly-annotated phone sequences. We report phone accuracy and
word accuracy on the Switchboard data, where the correct phonetic
transcription is approximated by a dictionary-based alignment of the
data by our baseline DNN + HMM system.

The TIMIT experiments rely on a 123 dimensional acoustic
feature vector, calculated as 40 dimensional mel-frequency log-
filterbank features, together with an energy measure and first and

1Replacing the pruning condition on ut with a condition on z(t) as for
decoding is not as effective because ũt 6= ût, z̃(t) = ẑ(t) for two candidates
ã, â indicate fundamentally different alignments.
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Acoustic HMM RNN Hybrid
model (dev) (test) (dev) (test) (dev) (test)
LR 62.6 61.8 63.8 62.8 65.3 63.5
RNN 69.9 68.6 70.6 69.4 74.2 72.2
DNN 79.0 77.1 79.8 77.9 80.4 78.6

Table 1. Development and test phone accuracies (%) obtained on the
TIMIT dataset using different combinations of acoustic and phonetic
models.

Acoustic HMM RNN Hybrid
model
LR 31.8 32.3 34.4
RNN 40.5 43.8 44.7
DNN 70.0 72.7 73.7

Table 2. Development phone accuracies (%) obtained on the Switch-
board dataset using different combinations of acoustic and phonetic
models.

second temporal derivatives. The Switchboard experiments use a
52 dimensional acoustic feature vector, consisting of a basic 13-
dimensional PLP cepstral vector together with its first, second, and
third temporal derivatives.

We consider three acoustic models: a simple logistic regression
(LR) classifier, an RNN using x as input (replacing z(t−1) in eq. 2)
and a DNN with 4× 1024 (TIMIT) or 5× 2048 (Switchboard) hid-
den units trained with context-dependent triphones. The DNN fea-
tures are the activations of the final hidden layer of the fully trained
model. For each acoustic model, we compare three phonetic models:
an HMM baseline, an RNN trained with fixed baseline alignments,
and an RNN trained with our hybrid EM procedure. Early stopping
is performed based on the cross-entropy of a held-out development
set, which was randomly selected from 5% of the training set for
Switchboard. The phone accuracy is determined as:

PA = 1−
∑
z̄,z̄0

L(z̄, z̄0)∑
z̄0
|z̄0|

(23)

where L(·, ·) is the Levenshtein distance between two sequences
and z̄, z̄0 represent respectively the predicted and ground-truth se-
quences.

Developement and test phone accuracies are presented for the
two datasets in Tables 1 and 2 for different combinations of acous-
tic and phonetic models. We observe consistent improvements with
the RNN phonetic model, especially when trained using the hybrid
procedure, attaining accuracies between 2–10% over the baseline.
Note that the improvements obtained with CRF full-sequence train-
ing are typically more modest in this context [18], suggesting that
Markovian assumptions in linear-chain CRFs are more limiting than
the conditional independence assumption violated by our model as
discussed in section 3.

It could be argued that the improvements brought by our RNN
phonetic model capitalize on higher-level dependencies between
phones, and that the inclusion of a word language model would
nullify those gains. In the next experiments we verify if our method
translates in good word recognition performance on the Switchboard
dataset. While a 3-gram language model could be directly integrated
into a sophisticated context-dependent decoding procedure, we sim-
ply provide a performance benchmark by rescoring a list of the N
best candidates found by a DNN + HMM system (N = 100). The

DNN + HMM 33.0
DNN + RNN 32.7
DNN (Hybrid) 32.0
Oracle 19.5
Anti-oracle 56.8

Table 3. Test word error rates (%) obtained on the Switchboard
dataset using different phonetic models.

word error rates shown in Table 3 clearly demonstrate the superior-
ity of an RNN phonetic model when used in complementarity to a
language model.

7. CONCLUSIONS

In this paper, we presented a principled way to combine an RNN-
based phonetic model with an arbitrary frame-level acoustic classi-
fier. The efficiency of the decoding and alignment procedures now
allows to use an RNN whenever an HMM was previously used. In-
terestingly, phone sequence modeling seems to be an important com-
ponent of accurate speech recognition, even in the case where strong
acoustic classifiers and word language models are already available.
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