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ABSTRACT

Existing calibration algorithms in radio interferometry implicitly as-

sume the noise to be Gaussian. However, outliers in the data due to

interference or due to errors in the sky model would have adverse

effects on processing based on a Gaussian noise model. Most of the

shortcomings of calibration such as the loss in flux or coherence, and

the appearance of spurious sources could be attributed to the devia-

tions of the underlying noise model. In this paper, we demonstrate

our previous proposal to improve the robustness of calibration by

using a noise model based on the Student’s t distribution. Unlike

Gaussian noise model based calibration, traditional nonlinear least

squares minimization would not directly extend to a case when we

have a Student’s t noise model. Therefore, we use the Expectation-

Conditional Maximization Either (ECME) algorithm for calibration.

We give simulation results to show the robustness of the proposed

calibration method as opposed to traditional Gaussian noise model

based calibration, especially in preserving the flux of weaker sources

that are not included in the calibration model.

Index Terms— Calibration, Interferometry: Radio interferom-

etry

1. INTRODUCTION

The square kilometre array (SKA) aims to surpass all existing radio

interferometers in terms of sensitivity and spatial resolution, espe-

cially at low radio frequencies (50 MHz to 1 GHz). This implies

building an instrument with hundreds of receivers that will collect

data volumes that are greater by orders of magnitude. In order to

reach the scientific potential, this data needs to be processed in many

aspects. First, the systematic errors in the data (mainly due to iono-

sphere, troposphere, and the receiver beam shape) needs to be esti-

mated and corrected for. Secondly, the effect of all bright celestial

radio sources needs to be subtracted from the data so that the weak

signals in the data (wherein the scientific interest lies) are suitable

for further scientific study.

We call both these tasks together as calibration. These two tasks

are more challenging at low radio frequencies due to two reasons.

First, the celestial radio sources are significantly brighter at these

frequencies. Secondly, the receiver beam shapes are much wider,

thus many more sources are seen. Therefore, calibration at low radio

frequencies is computationally demanding, even for conventional ra-

dio interferometers. This task is even more daunting for SKA, due

to the fact of having many more receivers.

Fortunately, array signal processing methods have enabled us to

make progress in tackling the aforementioned problems as work like

[1],[2],[3],[4] and [5] show. In all such methods, calibration is con-

sidered as a maximum likelihood (ML) estimation problem. Crucial

for such methods is an initial model of the sky, which is iteratively

updated in self-calibration. An accurate sky model is difficult to

obtain a priori, especially when the interferometric array has wide

beam shapes and many bright sources are in the field of view. As

studied by [6], [7], and [8], incomplete sky models give rise to vari-

ous problems in calibration including flux loss of unmodeled sources

and the appearance of spurious sources. In this paper, we consider

the errors in the initial sky model to be outliers in the data. There-

fore, as assumed in existing work, ML estimation under a Gaussian

noise model would not perform satisfactorily due to outliers in the

data. In particular, we are interested in minimizing the flux loss of

unmodeled sources (and noise suppression) due to having an incom-

plete sky model. This will be our sole criterion in measuring the

’robustness’ throughout this paper.

The novelty of the work presented in this paper (relation to prior

work) is mainly to demonstrate our previous work [9, 10] in deviat-

ing from Gaussian noise model based calibration, as done in existing

work [1],[2],[3],[5], with more simulations. As presented in our pre-

vious work [9, 10], we proposed to use Student’s t distribution [11]

based noise model to increase to robustness of calibration. The first

attempt in increasing robustness [12] used an l1 norm based cost

function (equivalent to having a Laplacian noise model [13]). We

choose the expectation-conditional maximization either (ECME) al-

gorithm [14] to find the ML estimate with Student’s t noise model

and unlike [12], this gives a computationally affordable calibration

algorithm.

The rest of the paper is organized is as follows. In section 2,

we give an overview of the data model. Next in section 3 we give

an overview of the proposed calibration based on Student’s t noise

model. We give results to show its robustness in section 4 before

drawing our conclusions in section 5.

Notation: Matrices and vectors are denoted by bold upper and

lower case letters as J and v, respectively. The transpose and the

Hermitian transpose are given by (.)T and (.)H , respectively. The

matrix Frobenius norm is given by ‖.‖. The set of real and complex

numbers are denoted by R and C, respectively. The identity matrix

is given by I. The matrix trace operator is given by trace(.).

2. RADIO INTERFEROMETRIC DATA MODEL

The overview of radio interferometry in this section is brief and for

more information about radio interferometry, the reader is referred to

[15], and [16] for the data model in particular. We consider the radio

frequency sky to be composed of discrete sources, far away from

the earth such that the approaching radiation from each one of them

appears to be plane waves. The interferometric array consists of R
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receiving elements with dual polarized feeds. At the p-th station,

this plane wave causes an induced voltage, which is dependent on

the beam attenuation as well as the radio frequency receiver chain

attenuation.

Consider the correlation of signals at the p-th receiver and the

q-th receiver, with proper signal delay. After correlation, the cor-

related signal of the p-th station and the q-th station (named as the

visibilities),Vpq (∈ C
2×2) is given by

Vpq =
K∑

i=1

JpiCpqiJ
H
qi +

K′∑

i′=1

Jpi′Cpqi′J
H
qi′ +Npq. (1)

In (1), Jpi and Jqi are the Jones matrices describing errors along

the direction of source i, at station p and q, respectively. The matri-

ces represent the effects of the propagation medium, the beam shape

and the receiver. There are K known sources (that are in the sky

model) andK′ unknown sources, and the total signal is the superpo-

sition of K + K′ such signals as in (1). The noise matrix is given

as Npq (∈ C
2×2). The contribution from the i-th source on base-

line pq is given by the coherency matrix Cpqi (∈ C
2×2). For a

linearly polarized source along the i-th direction, with Stokes pa-

rameters Ipqi, Qpqi, Upqi, Vpqi, we have

Cpqi = eφpqi

[
Ipqi +Qpqi Upqi + Vpqi

Upqi − Vpqi Ipqi −Qpqi

]
(2)

where φpqi is the Fourier phase component that depends on the di-

rection in the sky as well as the separation of stations p and q. For
baseline coordinates upq, vpq, wpq and direction cosines of the i-th
direction li,mi, ni, we have φpqi = −2π(upqli+vpqmi+wpq(ni−
1)). The noise matrix Npq is assumed to have elements with zero

mean, complex Gaussian entries with equal variance in real and

imaginary parts. Moreover, in (1), we have split the contribution

from the sky into two parts: K sources that are known to us and K′

sources that are unknown. Generally, the bright sources are always

known but there are infinitely many faint sources that are too weak

to be detected and too numerous to be included in the sky model.

Therefore, almost always K′ is much larger than K.

During calibration, we only estimate the Jones matrices Jpi for

p ∈ [1, R] and i ∈ [1,K], in other words, we estimate the errors

along the known bright sources. Due to our ignorance of the K′

unknown sources, the effective noise during calibration becomes

N
′

pq =
K′∑

i′=1

Jpi′Cpqi′J
H
qi′ +Npq (3)

and our assumption regarding the noise being complex circular

Gaussian breaks down, depending on the properties of the signals of

the weak sources. The prime motivation of this paper is to address

this problem of the possible non-Gaussianity of the noise due to an

error in the sky model. A similar situation could arise even for cal-

ibration along one direction (or direction independent calibration),

whenK = 1, if there is an error in the source model, for instance in

the shape of the source.

The vectorized form of (1), vpq = vec(Vpq) can be written as

vpq =
K∑

i=1

J
⋆
qi⊗Jpivec(Cpqi)+

K′∑

i′=1

J
⋆
qi′ ⊗Jpi′vec(Cpqi′)+npq

(4)

where npq = vec(Npq). Depending on the time and frequency

interval within which calibration solutions are obtained, we can stack

up all cross correlations within that interval as

d = [real(vT
12) imag(vT

12) real(v
T
13) . . . . . . imag(vT

(R−1)R)]
T

(5)

where d is a vector of sizeN × 1 of real data points. Thereafter, we

have the data model

d =
K∑

i=1

si(θ) +
K′∑

i′=1

si′ + n (6)

where θ is the real parameter vector (size M × 1) that is estimated

by calibration. The contribution of the i-th known source on all data
points is given by si(θ) (size N × 1) and the unknown contribution

from the i′-th unknown source is given by si′ (size N × 1). The

noise vector based on a Gaussian noise model is given by n (size

N × 1). The parameters θ are the elements of Jpi-s, with real and

imaginary parts considered separately.

The ML estimate of θ under a zero mean, white Gaussian noise

is obtained by minimizing the least squares cost

θ̂ = arg min
θ

‖d−
K∑

i=1

si(θ)‖2 (7)

as done in current calibration approaches ([1],[2],[3],[4],[5]). How-

ever, due to the unmodeled sources, the effective noise is actually

n
′ =

K′∑

i′=1

si′ + n (8)

even when n is assumed to be Gaussian.

In order to overcome this problem, we consider the possibility

of the noise model not being Gaussian during calibration. Ideally,

we should estimate the exact distribution of n′ but in practice this is

not feasible, mainly due to non-stationarity. Thus we need to choose

a fixed distribution and we select a noise model based on Student’s t

distribution. Our motivation for this is described in [10] and existing

work (e.g. [17], [18], [13]) taking a similar approach also justifies

this choice.

3. ROBUST CALIBRATION

In this section, we summarize our previous proposal [10] of the

utilization of robust Student’s t noise model for calibration. The

univariate Student’s t distribution ([17], [18]) can be described as

follows. Let X be a random variable with a normal distribution

N (ε, σ2/γ) where γ is also a random variable. Then the conditional

distribution of X is

p(x|ε, σ2, γ) =
1

(σ/
√
γ)
√
2π

exp

(

−1

2

(
x− ε

σ/
√
γ

)2
)

. (9)

Consider γ to have a Gamma distribution, γ ∼ Gamma( ν
2
, ν
2
),

where ν ∈ [0,∞] is the number of degrees of freedom. The den-

sity function of γ can be given as

p(γ|ν) = 1

Γ( ν
2
)

(ν
2

) ν
2

γ
ν
2
−1 exp

(−νγ
2

)
. (10)

Therefore, the marginal distribution of X is [18]

p(x; ε, σ2, ν) =
Γ( ν+1

2
)

(πν)1/2Γ( ν
2
)σ

(
1 +

1

ν

(x− ε

σ

)2)−
1

2
(ν+1)

(11)
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and this is the probability density function which defines the Stu-

dent’s t distribution. For low values of the number of degrees of

freedom ν, Student’s t distribution has a higher tail compared to a

Gaussian. The asymptotic limit of Student’s t distribution is Gaus-

sian as ν →∞.

As discussed in [10], we consider the increase in the noise vari-

ance due to the unmodeled sources in (8) as the effect of γ in (9).

Therefore, we consider the noise vector n
′ to have independent,

identically distributed entries, with the distribution given by (11)

with ε = 0 and σ = ρ = 1. We rewrite our data model (6) as

d =
K∑

i=1

si(θ) + n
′ = f(θ) + n

′
(12)

where the unknowns are θ and ν characterizing the noise n′. The i-
th element of the vector d (denoted by di) in (12) is assumed to have

a distribution as (11) with σ = 1 and µi = fi(θ), where fi(θ) is the
i-th element of the vector function f(θ). The likelihood function is

l(θ, ν|d) =
N∏

i=1

Γ( ν+1
2

)

(πν)1/2Γ( ν
2
)

(
1 +

(di − fi(θ))
2

ν

)−
1

2
(ν+1)

(13)

and the log-likelihood function is

L(θ, ν|d) (14)

= N log Γ(
ν + 1

2
)−N log Γ(

ν

2
)− N

2
log(πν)

− (ν + 1)

2

N∑

i=1

log

(
1 +

(di − fi(θ))
2

ν

)
.

Since the noise is not Gaussian, minimizing a least squares cost func-

tion (or maximizing the likelihood) will not give us the ML estimate.

In addition, we have an extra parameter, ν, which is the number of

degrees of freedom. Hence, we use the expectation-conditional max-

imization either algorithm (ECME [14],[19]) to solve this problem.

The ECME algorithm is an extension of the EM algorithm for t dis-

tribution presented by [17].

The auxiliary variables in the ECME algorithm are the weights

wi (N values) and a scalar λ. All these are initialized to 1 at the

beginning. The expectation step in the ECME algorithm involves

the conditional estimation of hidden variables γi (or the weights wi)

as

wi ← E{γi|di,θ, ν} = λ
ν + 1

ν + (di − fi(θ))2
(15)

and the update of the scalar λ

λ← 1

N

N∑

i=1

wi. (16)

The maximization step involves finding the value for ν that is a so-

lution for

Ψ(
ν + 1

2
)− log

(
ν + 1

2

)
−Ψ(ν/2) (17)

+ log(ν/2) +
1

N

N∑

i=1

(log(wi)− wi) + 1 = 0

where Ψ(x) = d
dx

log (Γ(x)) is the digamma function. Once wi

is known, di has a normal distribution with variance determined by

Fig. 1. An area of size 1 × 1 degrees in the simulated sky, with-

out any corruptions. There are a few weak sources and one strong

source in this part of the image.

wi. Therefore, in the maximization step of the ECME algorithm, we

minimize the weighted least squares cost function

l(θ|ν) =
N∑

i=1

wi(di − fi(θ))
2

(18)

to obtain a solution for θ.

The minimization of (18) can be done using well known

minimization algorithms such as the Levenberg-Marquardt (LM

[20],[21]) algorithm. We give a detailed description of this in [10].

Moreover, in our previous work [5], we have presented the space

alternating generalized expectation maximization (SAGE, [22]) al-

gorithm as an efficient and accurate method to solve (7), when the

noise model is Gaussian. We have also adopted this to solve (12)

with a Student’s t noise model and the details can be found in [10].

4. SIMULATIONS

We simulate an interferometer (similar to LOFAR http://www.lofar.org)

with R = 47 stations, observing at 150 MHz. The field of view of

the observation is about 12 degrees in diameter. The sources in the

sky are assumed to have a power law distribution in their intensities,

uniformly distributed over the field of view. In Fig. 1, we show a

small area of the true sky (without any errors) where we see bright

sources as well as weak sources.

During a 6 hour interferometric observation, where each data

sample has 10 s duration, we simulate errors along the brightest

sources, and an image with such errors is shown in Fig. 2. In or-

der to recover the true sky, the contribution of the strong sources

need to be estimated and subtracted from the data. Once the data

is calibrated, we get the image in Fig. 3, where we see the weak

sources again.

In our sky, there are 200 sources with 100 sources having flux

below 0.7 Jy (flux unit) and the rest between 0.7 and 40 Jy. We

vary the number of sources selected for calibration (therefore the

number of directions in the sky model) by varying the flux cutoff.

The remainder of the sources act as outliers to the data. We introduce

errors to the selected sources and add Gaussian noise (20 dB). After

calibration, we measure the recovered flux of the 100 sources below
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Fig. 2. Image of the sky (same area as Fig. 1) with corruptions. Due

to the corruptions and also due to incomplete Fourier sampling, the

sidelobe patterns generated by the strong sources completely over-

whelm the image and the weak sources are completely obscured.

Fig. 3. Calibrated image after estimating the errors along the strong

sources and subtracting them from the data. The weak sources

(within red circles) are barely visible.
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Fig. 4. Performance of robust calibration compared with normal

calibration. The number of directions calibrated is increased from

4 to 100. The recovered flux of the weak sources is shown as a ratio

to the original flux.
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Fig. 5. Computational time required by traditional calibration and

robust calibration. Robust calibration uses about 40% more time.

0.7 Jy. In Fig. 4, we have shown the recovered flux as a ratio to

original flux after calibration for varying number of directions.

We make several observations from Fig. 4. First, we see that

as we increase the number of directions calibrated, the recovered

flux of the weak sources (that are not part of the model) decreases.

Moreover, we see that robust calibration always has a higher value

for recovered flux. In Fig. 4, the calibration is performed per ev-

ery 20 data samples or per every 40 data samples. As the number

of data samples are increased (and also the number of constraints),

the flux loss is lowered. Finally, in Fig. 5, we present the computa-

tional time spent by normal calibration and robust calibration, for a

single calibration run. Both implementations are optimized [23] to

use hardware acceleration. We see that robust calibration takes about

40% more computing time.

5. CONCLUSIONS

We have presented increasing the robustness of radio interferometric

calibration using a Student’s t noise model instead of a Gaussian.

This results in an increase in preservation of the flux of weaker

background sources that are not included in the data model. Fu-

ture work would address derivation of analytical bounds for the

performance of robust calibration and improving the computa-

tional cost [24]. The source code for the software is available at

http://sourceforge.net/projects/sagecal/.
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