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ABSTRACT

Because of the denser active use of the spectrum, and be-
cause of higher radio telescope sensitivities, radio frequency
interference (RFI) mitigation has become a sensitive topic for
current and future radio telescope designs. In this paper, we
consider different interference mitigation options which take
advantage of both time-frequency and spatial RFI signatures.
After specific subspace decompositions, these RFI spatial sig-
natures are estimated and applied to pre- or post-correlation
data by means of spatial filtering techniques based on projec-
tors. We provide some performance analysis through simula-
tions and Cramer-Rao Lower Bound derivations. In addition,
recent results on real data from the LOFAR and EMBRACE
radio telescopes are presented.

Index Terms— RFI mitigation, Radio astronomy, An-
tenna array, Spatial filtering, Cyclostationarity

1. INTRODUCTION

The sensitivity of state-of-the-art radio telescopes is over ten
orders of magnitude higher than in most communications sys-
tems. Although radio telescopes are best located in relatively
remote areas, astronomical observations may still be ham-
pered by man-made radio frequency interference (RFI). An
exhaustive survey on RFI mitigation techniques for radio as-
tronomy [1] and a recent workshop [2] dedicated to that topic
have shown various developments for preserving quality of
radio astronomical observations. Note however that, in rou-
tine practice, the majority of RFI mitigation procedures are
based on corrupted data detection and flagging. For exam-
ple, the operational Low Frequency Array (LOFAR) [3, 4],
see figure 5, provides a post-correlation RFI classification tool
based on combinatorial thresholding [5].

However, next generation radio telescopes such as the
just mentioned LOFAR or the future Square Kilometre Array
(SKA) [6] currently in an engineering phase, can offer much
more options. Indeed, their multi-stage architecture (i.e. the
telescope is an array of phased stations and each station is
a phased antenna array) can lead, amongst others, to inter-
esting RFI spatial filtering approaches. This paper addresses

interference spatial processing at the station stage, i.e. before
central correlation [7].

Consider an arbitrary array of M antennas. The Nc cos-
mic sources and Nr RFI sources are assumed to be uncorre-
lated. They are also assumed to be uncorrelated to the system
noise. Assuming the narrow band hypothesis holds, the data
covariance matrix is given by [8] ((.)H refers to the hermitian
transpose):

R = ArRrA
H
r︸ ︷︷ ︸

RRFI

+AcRcA
H
c︸ ︷︷ ︸

Rcosmic

+Rnoise (1)

• Ar = [ar1 . . .arNr
] the (M ×Nr) interference spatial

signature matrix, where each column vector ark is the
spatial signature of the kth interference,

• Ac = [ac1 . . .acNc
] the (M ×Nc) cosmic source spa-

tial signature matrix,

• Rc (resp. Rr), the cosmic source (resp. the RFI) diag-
onal power matrix,

• Rnoise the (M × M) system noise correlation matrix
taking in account the sky and electronic noise contribu-
tions, including potential coupling.

It is assumed that cosmic source contributions are buried
in the noise (or negligible) and that the system noise is cali-
brated with equal power σ2

n on each antenna after applying a
whitening step [9, 10] (i.e. Rnoise = σ2

nI). In [8, 11, 12] spa-
tial filtering techniques are proposed, based on the RFI spatial
signature estimation, Ar, followed by a subspace projection
to remove that dimension from R.

In Section 2 the approach based on eq. (1) is extended
to include cyclostationary properties of the RFI signals. As
a benchmark, we present the Cramer Rao Lower Bound
(CRLB) for some specific statistical Gaussian models. In
Section 3, several spatial filtering techniques are described.
Finally, Section 4 presents some experimental results with
observed radio telescope data.
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2. RFI SUBSPACE ESTIMATION

In order to mitigate the interference contributions through
spatial filtering, we need to estimate a set of vectors spanning
the subspace determined by Ar.

With the simplified model mentioned in the previous sec-
tion (i.e. R = ArRrA

H
r + σ2

nI), a singular value decompo-
sition (SVD) leads to the expected result. Indeed, in this case,
the RFI subspace is spanned by the Singular Vectors (SV) as-
sociated to the Nr dominant singular values of R.

When cosmic sources contributions are no longer negligi-
ble, or when the noise is not calibrated [10], the RFI subspace
estimation must be based on other properties, as presented
hereafter.

2.1. Cyclostationary and time-lag approaches

Most telecommunication signals show cyclostationary prop-
erties due to periodic characteristics of their modulation
schemes [13]. By modifying the radio telescope correlator
input data, a cyclic correlation matrix, Rα,τ , can be com-
puted:

Rα,τ = E
{
yα(t− τ/2)y−α(t+ τ/2)H

}
(2)

where yα(t) = x(t)e−jπαt, E {.} is the expected value (in
case of observed data, the expected value is replaced by 〈.〉N ,
the time averaging operator over N samples), and α and τ
are related hidden periodicities of the (interfering) telecom-
munication signals. Assuming a cyclostationary RFI signal
impinges on the antenna array, and assuming cosmic sources
and system noise signals are stationary by nature over a short
time scale, we have

Rα,τ = RRFI
α,τ + Rcosmic

α,τ︸ ︷︷ ︸
→0

+Rnoise
α,τ︸ ︷︷ ︸

→0

= ArRr
α,τAr

H

(3)
with Rα,τ

r containing cyclic information. Applying an SVD
to Rα,τ leads to RFI subspace estimation, that is the set of
SV corresponding to the non-zero (principal) singular values
of Rα,τ . A similar approach can be followed using the cyclic
conjugated correlation matrix[14].

Assuming that cosmic sources and system noise are al-
most white in the considered band, we can simplify eq (2)
by limiting α to 0. Thus, for non-white telecommunication
signals, if we can find a set of time-lags τ0 > 0 for which
Rcosmic

0,τ and Rnoise
0,τ are equal to zero while RRFI

0,τ is
not, then the RFI subspace can be estimated using the cyclo-
stationary approach described in [15].

The different RFI subspace estimation techniques pre-
sented are based on an SVD of one particular type of co-
variance matrix. Since in practise a covariance matrix is
calculated over a finite number of samples, the use of several
matrices could increase the estimation accuracy. In [15] the
RFI subspace is evaluated by joint diagonalization of multiple
cyclic and time-lagged covariance matrices.

For all these methods, more details and results with simu-
lated data are given in [15, 16]. In this paper however, experi-
mental results are given, in the last section. Before presenting
performance simulations, we will present the CRLB for some
Gaussian signals cases.

2.2. Gaussian CRLB

Here we consider the case of one RFI source signal in additive
white Gaussian noise [17]:

x(t) = arr(t) + n(t) (4)

where r(t) is either Gaussian stationary iid with zero mean
and power σ2

r (Gaussian Model: GM), or r(t) = ej(ωt+ψ)s(t)
where ω/2π is an unknown carrier frequency, ψ an unknown
phase parameter and s(t) a zero mean iid real Gaussian
signal of power σ2

r (cyclostationary Modulated Gaussian
Model: MGM). The antenna array is assumed to have un-
calibrated phases (but calibrated magnitudes [9, 10]), and
hence the steering vector takes the general form ar =
[1, ejφ1 , · · · , ejφM−1 ]T where φ1, · · · , φM−1 are unknown
phase parameters. The parameter vector containing the un-
knowns corresponds to
Θ = [φ1, · · · , φM−1, σ2

r , σ
2
n]t for the Gaussian model and to

Θ = [φ1, · · · , φM−1, σ2
r , σ

2
n, ω, ψ]t for the modulated Gaus-

sian model. We refer to Φ = [φ1, · · · , φM−1]t as the set of
desired parameters (the others are the nuisance parameters).
The CRLB w.r.t. the desired parameter vector Φ is derived
using the procedure described in [9] (details are omitted due
to space limitation).

CRLB(φk)k=1,...,M−1 =
(1 +M inr)
M inr2N

(GM) (5)

CRLB(φk)k=1,...,M−1 =
(1 + 2M inr)

2M inr2N
(MGM) (6)

where the Interference-to-Noise Ratio (inr) is σ2
r/σ

2
n and N

is the number of samples. In the MGM case, N is a multiple
of the period 2π/ω in order to neglect the edge effects.

Similar results on the direction of arrival have been ob-
tained in [18]. In particular, both results show that using
cyclostationary properties improve estimation performance at
low inr by a factor 2.

From the previous equations, we can derive the CRLB for
the spatial signature vector ar and we can define the lower
bound for the dot product between true and estimated signa-
ture vector:

E

{
‖aHr âr
M
− 1‖2

}
≥ M − 1

2M
CRLB(φk) (7)

where âr is the estimated spatial signature.
Figure 1 shows a comparison between the different inter-

ference subspace estimation techniques presented here.
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Fig. 1. Comparison of three different interference subspace
estimation techniques and their CRLB on the MGM data
model according to the inr.

The performance of the techniques are quantified accord-
ing to the criterion defined in eq. (7), averaged over 1000
trials. The simulated interference is based on the MGM case,
with M = 20 antennas, 2π/ω = 20 and N = 2560 sam-
ples. RFI subspaces are estimated through an SVD where the
dominant SV is used as an estimation of ar.

The joint SVD approach consists in joint diagonalizing a
cyclic and a classic covariance matrix using an extended SVD
[15].

At low inr (inr < −15dB), the estimated performance
diverges from the theoretical estimate. This effect is due to the
restricted range of the parameters involved in the simulation
(e.g. φk ∈ [−π,+π]).

The joint SVD approach has lower variance than any other
estimator. At high inr, the performances of all the estimators
converge toward the CRLB.

3. SPATIAL FILTERING BY PROJECTION
TECHNIQUES

Once the interference subspace has been estimated, spatial
filters can be built and applied at the antenna array output.
Although exhaustive beamforming techniques can be found
in the litterature [19, 20], the techniques presented here are
limited to projection approaches. These approaches consist
of reducing the radio telescope data vector space dimension
by removing the interference subspace contributions.

The orthogonal projector nulling the interference sub-
space Ar for example is defined as [21]:

P⊥Ar
= I−Ar(A

H
r Ar)

−1AH
r (8)

This projector can either be applied at the antenna array out-
put (at the pre-correlation stage) or on the data correlation

Fig. 2. (a) LOFAR observation in the FM frequency band.
(b) LOFAR observation after orthogonal projection of the
strongest FM interference.

matrix (at the post-correlation stage) leading to:

xclean(t) = P⊥Ar
x(t) = P⊥Ar

(Acc(t) + n(t)) (9)

Rclean = P⊥Ar

(
AcRcA

H
c + Rnoise

)
P⊥Ar

H
(10)

To preserve the power of the source of interest, oblique pro-
jection has been proposed in [16]. With Ar the interference
subspace and w the steering vector corresponding to the di-
rection of interest, the oblique projection is defined as [16]:

EwAr = w
(
wHP⊥Ar

w)
)−1

wHP⊥Ar
(11)

Suppose the cosmic source ck(t), with steering vector ack, is
of interest, we replace in eq. (9) P⊥Ar

by EwAr
.

4. REAL DATA PROCESSING

Some results of RFI mitigation processing applied on real ra-
dio telescope data are presented here, as well as an oblique
projection based algorithm implementation.

4.1. LOFAR data

Figure 2.(a) shows the Time Frequency representation of an
observation made with the radio interferometer LOFAR[3, 4].
This observation is corrupted by two strong Frequency Mod-
ulated (FM) signals.

An orthogonal projection method has been applied to this
observation. The interference subspace was estimated using
the classic covariance matrix of the observation. One sin-
gle SV has been selected to estimate the strongest RFI sub-
space. Figure 2.(b) shows a time-frequency representation of
the same observation after applying the orthogonal projection
which clearly illustrates the effect of spatial RFI mitigation.

Figure 3 shows another example of orthogonal projection
applied to LOFAR data. Figure 3.(a) is an all-sky (hemi-
sphere) map, constructed by applying beamforming to the ob-
served correlation matrix (in all directions in the sky), with
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three cosmic sources and one interference at the horizon. Fig-
ure 3.(b) is a skymap created with a 1-sample time-lag covari-
ance matrix. The cosmic sources are no longer visible. Figure
3.(c) corresponds to the corrected skymap, once the interfer-
ence has been projected out.

(a) (b) (c)

Fig. 3. (a) LOFAR skymap with cosmic sources in the cen-
tre and interference on the horizon. (b) Skymap based on a
1-sample time lag covariance matrix, only interference is vis-
ible. (c) LOFAR skymap after orthogonal projection.

4.2. EMBRACE data

An RFI mitigation algorithm has been implemented at the
French station of the demonstrator EMBRACE [22] (see Fig.
5). EMBRACE is a dense aperture array that provides a
one second covariance matrix (crosslet) and a beamformed
signal (beamlet) corresponding to a frequency of interest.
The crosslet is used to estimate the interference subspace
dimension through a Minimum Description Length (MDL)
approach [23], and a subspace basis is estimated with a clas-
sical SVD.

Once the interference subspace has been estimated, an
oblique projector is built, taking into account the interference
subspace as well as a direction of interest. The resulting pro-
jection matrix is finally applied to the antenna array to provide
a clean beamlet.

EMBRACE can also scan a wider frequency band. In
this case, a crosslet correponding to one single subband is
provided each second and the full frequency bandwidth is
scanned in 512 seconds. After 512 seconds, the scan restarts
at the first frequency subband of the frequency bandwidth of
interest. Real time RFI mitigation can not be achieved in this
mode since the corrections would only be applied every 512
seconds, after the interference subspace has been estimated.
The data can however be corrected offline.

Figure 4 shows an observation made in this mode. The
green graph is a non-corrected signal corresponding to a GPS
drift scan. Some other interference can be seen on this obser-
vation, particularly a strong home-made narrow band inter-
ference at the middle of the frequency bandwidth. The blue
graph is the same observation corrected with an orthogonal
projection, and the red graph is the observation corrected by
an oblique projection. As we can see, the oblique projection
better recovers an interference-free observation.
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Fig. 4. GPS satellite drift scan and other interference recorded
with EMBRACE working in the full bandwidth mode. Blue
and red graphs correspond to the same observation, respec-
tively corrected by an orthogonal and an oblique projection.

Fig. 5. Nançay observatory showing a French LOFAR station
(left), and the French EMBRACE station (right).

5. CONCLUSION

In this article we presented different spatial filtering strate-
gies for interference mitigation using phased antenna arrays
in radio astronomy. The spatial diversity, as well as RFI char-
acteristics, provide information allowing better RFI subspace
estimation, and therefore mitigation, than classical projection
methods.

These results however should not be misinterpreted to im-
ply possible ways to soften radio regulation agreements. In-
deed, mitigation always includes cost both in terms of invest-
ments and often also in terms of signal integrity. In practice,
RFI mitigation counter measures should be balanced in the
sense that the cost of including RFI measures in the design is
justified in terms of regained spectrum.
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