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ABSTRACT

We perform bivariate statistical analysis and modeling of the
joint distributions of spatially adjacent sub-band responses for both
luminance/chrominance and range data in natural scenes. In partic-
ular, we introduce a multivariate generalized Gaussian distribution
and an exponentiated sine function to model the underlying statistics
and correlations. The experimental results show that the bivariate
statistics relating spatially adjacent pixels in both 2D color images
and range maps are well described by the proposed models. We val-
idate the robustness of the proposed bivariate models using a multi-
variate statistical hypothesis test, and further demonstrate their effec-
tiveness with application to a prototype depth estimation algorithm.

Index Terms— bivariate statistical modeling, 3D natural scene
statistics (NSS)

1. INTRODUCTION

Natural scene statistics (NSS) have been proven to be important in-
gredients towards understanding both the evolution of the human
vision system and the design of image processing algorithms [1].
Extensive work has been conducted towards understanding the lu-
minance statistics of natural scenes [2, 3, 4, 5], and the link be-
tween natural scene statistics and neural processing of visual stim-
uli [6, 7]. The natural scene statistics and models of 2D images
have been applied to various image and video applications with suc-
cess, e.g., image denoising [8, 9] and image/video quality assess-
ment [10, 11, 12, 13].

There has also been work conducted on exploring 3D natural
scene statistics [14, 15, 16]. Potetz et al. [14] examined the relation-
ships between luminance and range over multiple scales and applied
their results to shape-from-shading problems. Yang et al. [15] ex-
plored the statistical relationships between luminance and disparity
in the wavelet domain, and applied the derived models to a Bayesian
stereo algorithm. Recently, Su et al. [16] proposed robust and re-
liable statistical models for both marginal and conditional distribu-
tions of luminance/chrominance and disparity in natural images, and
incorporated these models in a chromatic Bayesian stereo algorithm.

However, no work has been proposed to explore the bivari-
ate statistics and modeling of luminance/chrominance and range
data in natural scenes. In this paper, we aim to fill this gap by
utilizing the high-resolution, high-quality color images and cor-
responding ground-truth range maps from the LIVE Color+3D
Database Release-2 [17]. We study the joint statistics of spatially
adjacent wavelet coefficients at different sub-bands of both lu-
minance/chrominance and range data. To model the underlying
bivariate statistics, we adopt the versatile and flexible multivariate
generalized Gaussian distribution (MGGD). In addition, we observe
strong orientation correlation between spatially adjacent sub-band

(a) (b)

Fig. 1. An example pair of 2D color image and corresponding
ground-truth range map in the LIVE Color+3D Database Release-
2.

responses, which can be well modeled by an exponentiated sine
function.

The rest of this paper is organized as follows. Section 2 briefly
describes the LIVE Color+3D Database Release-2 and the prepro-
cessing steps performed on both luminance/chrominance and range
data. The bivariate statistical modeling is detailed in Section 3, in-
cluding a multivariate statistical hypothesis test. The application to
a practical depth estimation framework is demonstrated in Section 4.
Finally, Section 5 summarizes the paper.

2. DATABASE AND DATA PRE-PROCESSING

2.1. LIVE Color+3D Database Release-2

To perform the bivariate statistical modeling of natural image and
range data, we use the LIVE Color+3D Database Release-2, which
contains 99 pairs of stereoscopic left and right color images with
accurately co-registered corresponding ground-truth range maps at
a high-definition resolution of 1920⇥1080 [17]. The image and
range data in LIVE Color+3D Database Release-2 were collected
using an advanced range scanner, RIEGL VZ-400 [18], with a Nikon
D700 digital camera mounted on top of it, which were operated on
a solidly built robotic gentry to precisely capture stereoscopic im-
ages and range maps at an interocular distance of 65 (mm). Figure 1
shows an example pair of the color image and its ground-truth map
in the LIVE Color+3D Database Release-2.

2.2. Luminance/Chrominance and Range

All color images are first transformed into the perceptually relevant
CIELAB color space with one luminance (L*) and two chrominance
(a* and b*) components. CIELAB color space is optimized to quan-
tify perceptual color differences and better corresponds to human
color perception than does the perceptually nonuniform RGB space
[19]. Each image is then transformed by the steerable pyramid de-
composition, which is an over-complete wavelet transform that al-
lows for increased orientation selectivity [20]. The utilization of
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the wavelet transform is motivated by the fact that its space-scale-
orientation decomposition mirrors the band-pass filtering that occurs
in area V1 of the primary visual cortex [2, 21].

After applying the multi-scale, multi-orientation decomposition,
we perform the perceptually significant process of divisive normal-
ization on the image wavelet coefficients at all sub-bands [22]. The
divisive normalization transform (DNT) used in this paper is imple-
mented as follows [23].
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For range data, we perform the same multi-scale, multi-orienta-
tion wavelet decomposition and divisive normalization transform to
obtain the range sub-band coefficients after DNT. In the next sec-
tion, we detail the statistical modeling of joint bivariate distribu-
tions between spatially adjacent sub-band coefficients in both lumi-
nance/chrominance and range data in the LIVE Color+3D Database
Release-2.

3. BIVARIATE STATISTICAL MODELING

It has been demonstrated that there are strong statistical relationships
between co-located luminance/chrominance and range/disparity
band-pass responses, which can be well modeled using various uni-
variate probability distributions [15, 16]. However, there still exist
higher-order dependencies between neighboring pixels in natural
images and range maps, which no robust or reliable statistical model
has been proposed to account for. Here we examine the statistical
relationships between spatially adjacent pixels in both color images
and range maps, and model the corresponding bivariate statistics
using a multivariate generalized Gaussian distribution and the corre-
lations with an exponentiated sine function.

3.1. Multivariate Generalized Gaussian Distribution

It is well known that the histogram of sub-band coefficients in natural
images becomes Gaussian-like after divisive normalization. How-
ever, we found that after performing DNT, the joint statistics of spa-
tially adjacent sub-band coefficients in natural images possess high
orientation dependencies, which no longer can be modeled as inde-
pendent bivariate Gaussian distributions. In order to model both uni-
variate and bivariate statistics of sub-band coefficients in natural im-
ages, we utilized the multivariate generalized Gaussian distribution,
which includes both multivariate Gaussian and Laplace distributions
as special cases.

The probability density function of a multivariate generalized
Gaussian distribution (MGGD) is defined as:
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where y 2 R+. Note that when � = 0.5, Eq. (2) leads to the multi-
variate Laplacian distribution, and when � = 1, Eq. (2) corresponds
to the multivariate Gaussian distribution. Moreover, when � ! 1,
the MGGD converges to a multivariate uniform distribution.

To fit MGGD to the bivariate histogram of spatially adjacent
sub-band coefficients in natural images and find the correspond-
ing model parameters, we adopt the maximum likelihood estimator
(MLE) algorithm [24].

3.2. Joint Distribution and Bivariate GGD Fit

We examine the joint distribution of spatially adjacent wavelet co-
efficients after DNT at different sub-bands for both the color im-
ages and ground-truth range maps in the LIVE Color+3D Database
Release-2. Here we utilize the steerable pyramid decomposition with
five scales, from 1 (finest) to 5 (coarsest), and eight orientations, i.e.,
0-deg, 22.5-deg, . . . , 157.5-deg [20]. Note that the orientation is
defined as the propagation direction of the sinusoidal signal.

In our analysis and modeling, we mainly focus on two ordinary
cases of spatially adjacency, the horizontally and vertically adjacent
pixels. Specifically, for horizontally adjacent pixels, we form an N -
by-2 matrix W, where N is the total number of pairs of pixels sam-
pled from an image and its range map, and each pair of pixels is
sampled from the locations (x, y) and (x + 1, y). Similarly, for
vertically adjacent pixels, each pair of pixels is sampled from the lo-
cations (x, y) and (x, y + 1). Since similar statistics are observed
for both horizontally and vertically adjacent pixels, we discuss the
results only for the horizontal case hereafter, if not specified explic-
itly. In addition, the joint histogram of horizontally adjacent wavelet
coefficients after DNT is computed from all the N row vectors 2 R2

in the N -by-2 matrix W. Therefore, we fit the joint histograms in
both the color images and range maps with the bivariate generalized
Gaussian distribution (BGGD) model by estimating the parameters
M, ↵, and � in Eq. (2) with N = 2.

Figure 2 shows the joint distributions and their corresponding
BGGD fits of horizontally adjacent L* sub-band coefficients at scale
= 2 and two different orientations: 0-deg and 90-deg. From the three-
dimensional illustrations, where the blue bars represent the actual
coefficient histograms and the colored meshes represent the BGGD
fits, we can see that the joint distributions are well fitted by the bivari-
ate generalized Gaussian distributions. The 2D illustrations, which
represent the iso-probability contour maps of the joint distributions,
also demonstrate the accurate fits of the BGGD models. The most
important observation here is that the shape and height of the joint
distributions both vary with the sub-band orientation. In particu-
lar, when the spatial relationship of adjacent pixels, e.g., horizontal,
matches the sub-band orientation, e.g., 90-deg, the joint distribution
becomes peaky and extremely elliptical. On the other hand, when
the spatial relationship and the sub-band orientation are orthogonal,
e.g., horizontal vs. 0-deg, the joint distribution appears to be al-
most circular and more Gaussian-like. These results imply that there
exists much higher dependencies between spatially adjacent lumi-
nance pixels after being decomposed by band-pass filters with the
matched orientation. Note that similar results are observed for both
chrominance and range data, which are not shown here due to space
limitations.

To further examine the orientation dependency of luminance/
chrominance and range sub-band coefficients, we plot the BGGD
model parameters, i.e., ↵ and �, as a function of orientation at scale
= 2 in Figure 3(a) and (b), respectively. We can clearly see that
there is strong orientation dependency for both parameters ↵ and �,
where they reach the minimum when the spatial relationship matches
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(a) 3D illustration (b) Histogram (c) BGGD fit

(d) 3D illustration (e) Histogram (f) BGGD fit

Fig. 2. Joint distribution and BGGD fit of L* at scale = 2 and two
different orientations: 0-deg and 90-deg.
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Fig. 3. The two fitting parameters of BGGD and correlation coeffi-
cients as a function of orientation at scale = 2.

the sub-band orientation, indicating that the horizontally adjacent
sub-band coefficients possess the highest correlation at orientation
= 90-deg compared to other sub-band orientations. In fact, we can
examine these statistical dependencies from another, probably more
intuitive, perspective in terms of correlation coefficients, which are
embedded in the scatter matrix M of the BGGD model. It can been
seen in Figure 3(c) that the horizontally adjacent sub-band coeffi-
cients are most correlated when the orientation of band-pass filter-
ing aligns at 90-deg, substantiating the orientation dependencies ob-
served in Figure 2.

3.3. Exponentiated Sine Function

As shown in Figure 3(c), the correlation coefficients between spa-
tially adjacent sub-band responses possess strong orientation depen-
dencies. In order to model this orientation dependency, we adopt the
exponentiated sine function, which is given by:
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where A is the amplitude, T is the period, ✓ is the phase, � is the ex-
ponent, c is the offset, and x and y represent the sub-band orientation
and the correlation coefficient between spatially adjacent sub-band
responses, respectively.

Since the orientation-dependent correlation coefficient between
horizontally adjacent sub-band responses is periodic with T = 180
(deg) and phase ✓ = �⇡

2 by nature, we fix them to obtain the ex-
ponentiated sine model with the three parameters: amplitude A, ex-
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Fig. 4. The orientation-dependent correlation coefficient curves and
the corresponding exponentiated sine fits.

Table 1. p-Values of Multivariate t-Test for the Exponentiated Sine
Model Parameters at Different Scales

Scale L* a* b* Range
1 0.9996 0.9988 0.9988 0.5929
2 0.9855 0.9977 0.9956 0.5011
3 0.9425 0.9864 0.9911 0.4877
4 0.8790 0.9601 0.9394 0.8701
5 0.7780 0.7374 0.8595 0.8155

ponent �, and offset c. Figure 4 shows the orientation-dependent
correlation coefficient curves and their corresponding exponentiated
sine fits for both luminance/chrominance and range at scale = 3.
It can be seen that all of the four exponentiated sine models give
extremely good fits according to the mean squared error (MSE),
and each of the three fitting parameters has similar values for lu-
minance/chrominance but slightly different values for range data.

3.4. Validation of the Exponentiated Sine Model

To further validate the robustness of the proposed exponentiated sine
model, we perform a statistical hypothesis test on the three parame-
ters of the exponentiated sine model across all natural scenes in the
LIVE Color+3D Database Release-2. First, we compute the mean
of the orientation-dependent correlation coefficient curves across all
N images in the database, and fit the exponentiated sine function to
the mean curve to obtain the three model parameters, [A0, �0, c0]

T .
Then, we adopt the one-sample multivariate t-test to determine if the
null hypothesis H0, i.e., the mean vector x =

P
N

i=1 xi

of the pop-
ulation x

i

= [A
i

, �
i

, c
i

]T , i 2 {1, · · · , N} is equal to our model
parameter vector µ0 = [A0, �0, c0]

T , is supported. In particular, we
compute the Hotelling’s T -squared statistic T 2, which is a general-
ization of Student’s t statistic:

T 2 = N(x� µ0)
T

S
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where S is the sample covariance matrix of x
i

:
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1
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Table 2. Numerical comparison of Depth Estimation Algorithms in
Terms of Correlation Coefficients

Method Pearson’s ⇢ Spearman’s ⇢
Mean Median Mean Median

Previous Framework 0.39 0.38 0.42 0.41
Current Framework 0.43 0.42 0.52 0.53

Depth Transfer 0.41 0.42 0.51 0.52

Finally, since N�P

P (N�1)T
2 ⇠ F

P,N�P

, where F
P,N�P

repre-
sents the F -distribution with parameters P and N � P , we are
able to compute the p-value of our null hypothesis test, i.e.,
p = 1 � C

FP,N�P (
N�P

P (N�1)T
2), with the cumulative distribution

function of the F -distribution, C
FP,N�P . Note that P and N are

the dimension of x
i

and the total number of samples, respectively,
and in our test, P = 3 and N = 99.

Table 1 lists the p-values of the multivariate t-tests for the ex-
ponentiated sine model parameters within luminance/chrominance
and range data across different scales. We can see that even with
a high value of the one-sided significance level ↵ = 0.1, the null
hypotheses of both luminance/chrominance and range data across
all scales are accepted. These results clearly support the validity of
our exponentiated sine model fitting the orientation-dependent cor-
relation coefficients between spatially adjacent sub-band responses
in natural images. In the next section, we demonstrate a practical
application of the proposed exponentiated sine model exploring the
bivariate natural scene statistics to the problem of depth estimation
from monocular natural images.

4. APPLICATION TO DEPTH ESTIMATION FROM
MONOCULAR NATURAL IMAGES

To demonstrate the effectiveness of the proposed exponentiated sine
model, we apply it to solve a practical problem of depth estimation
from monocular natural images. We improve the performance of
the Bayesian framework proposed in [25] by extracting new features
as the three parameters, [A, �, c]T , of the exponentiated sine model
across different scales from the correlation coefficients of horizon-
tally adjacent sub-band responses. In particular, we append this new
feature to the original one in training the regressor to learn the mean
and standard deviation of range from color image patches. Since
we only focus on the performance improvement due to space limita-
tions, interested readers may refer to [25] for more details.

Table 2 shows the numerical comparison of different depth es-
timation algorithms, including the previous Bayesian framework,
the current Bayesian framework with the exponentiated sine model,
and the state-of-the-art method, Depth Transfer [26], in terms of
the correlation coefficients between the estimated and ground-truth
range values. We train and test these algorithms on LIVE Color+3D
Database Release-2, and the results are obtained across 30 training-
testing splits with 80% training and 20% testing. It can be seen that
the new feature extracted based on the proposed exponential sine
model boosts the performance of the previous framework in terms
of both metrics. In addition, the current framework achieves com-
parable yet slightly better performance than Depth Transfer. Fig-
ure 5 gives the visual comparison of the estimated range maps from
the current framework with the exponentiated sine model and Depth
Transfer. We can see that besides the higher correlation with the
ground-truth range values, the current framework is also able to give
more details in the estimated range map.
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(d) Estimated Range Map of Current
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(f) Estimated Range Map of Depth Transfer

Fig. 5. Visual comparison between current framework with 5 scales
and depth transfer.

5. CONCLUSIONS

By utilizing the large volume of high-quality, high-resolution color
images and ground-truth range maps in LIVE Color+3D Database
Release-2, we examined the bivariate statistical relationships and
correlation coefficients between spatially adjacent sub-band re-
sponses of luminance/chrominance and range data in natural scenes.
We utilized a multivariate generalized Gaussian distribution to
model the bivariate histogram of spatially adjacent sub-band re-
sponses, and found that there exists strong orientation dependency
along different spatial alignment of neighboring pixels, which can be
well described by the model parameters. We modeled the same ori-
entation dependency observed in the correlation coefficient between
spatial adjacent sub-band responses with an exponentiated sine
function, and validated its robustness using a multivariate statistical
hypothesis test. We believe these bivariate statistics and models
embed rich information relating luminance/chrominance and range
information of natural environments. Here we briefly demonstrate
their effectiveness and power by introducing the exponentiated sine
model to a Bayesian framework of depth estimation from monocular
images with improved performance. A variety of 3D algorithms and
applications, e.g., stereoscopic quality assessment, 2D-to-3D video
conversion, etc., can certainly benefit from these robust and effective
bivariate statistical models.
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