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ABSTRACT

Local patch-based models have been shown to be effective in nu-
merous image processing applications and have become the core of
the state-of-the-art denoising, inpainting and structural editing algo-
rithms. Most such modeling approaches mainly rely on searching
for similar patches in the set of available patches. However, the ap-
parent similarity between sufficiently small (e.g., 5×5 pixels) image
regions motivates modeling them with a low-dimensional manifold
instead and suggests the existence of a simple parametrization for
it. Although there exist manifold models for a single patch, it has
remained an open problem how to efficiently represent an entire im-
age in terms of its overlapping patches drawn from the underlying
non-linear manifold. We propose to consider an image to lie on the
intersection of separate manifolds corresponding to different over-
lapping patches, which we approximate with affine subspaces in a
kernel-induced feature space. In contrast to our previous work on
this topic, here we solve the intersection and preimage problems si-
multaneously, ensuring the existence of a suitable solution in the
input space. This significantly improves the performance and ro-
bustness of our method. Our method incorporates any desired equal-
ity constraints on the image, and thus can be used to regularize any
linear inverse problem with the manifold intersection model. Our
experimental results show nearly perfect compressive sensing recon-
struction of images whose patches are well described by a manifold
model, as well as exceptional performance in denoising and inpaint-
ing.

Index Terms— Patch-based image processing, inverse prob-
lems, kernel methods, manifold models.

1. INTRODUCTION
A linear inverse problem is typically formulated as a problem of re-
construction of a signal y∗ from its observations b:

b = Wy∗ + n. (1)
Typically, the low rank of the matrix W makes it underdetermined
with an infinite number of solutions (as in compressive sensing or
inpainting). In denoising, even though W = I, the identity matrix,
additive noise n still makes the problem (1) ill-posed.

In order to restrict the set of possible solutions additional as-
sumptions on the sought signal y∗ that will promote its desired quali-
tative characteristics should be made along with establishing a quan-
titative criterion for choosing the optimal one. For example, one
may minimize total variation (TV) to sharpen edge transitions of the
image. The appropriateness of the chosen model for representing a
particular class of signals is a major factor that determines the overall
performance of a signal processing algorithm.

While naturally suitable for texture synthesis [1, 2], inpainting
[3, 4, 5], and structural image editing [6, 7], modeling images with
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small overlapping patches was found recently to be surprisingly ef-
fective in regularizing other inverse problems. For example, the idea
of adaptively averaging similar image patches for denoising [8, 9]
was further generalized in the state-of-the-art algorithm, BM3D [10].
This model was also adapted for superior performance in deblurring,
compressive sensing reconstruction, superresolution and other prob-
lems in image processing [11, 12].

While these algorithms proceed by searching for and building
a filter based on similar patch exemplars, the implicit assumption
being made is one of smoothness of the set of patches. Indeed,
it has been shown that patches, even though sampled from a rel-
atively high-dimensional space (R25 for 5 × 5 pixel patches), can
be parametrized by far fewer continuous coordinates [13]. In other
words, they belong to an underlying manifold that imposes mutual
constraints on the pixels of each patch. This manifold model was
studied in [14], and the manifold of high-contrast patches was fur-
ther shown in [15] to have the topology of a Klein bottle. Thus, when
algorithms like BM3D find and adapt similar exemplars, we would
argue that they implicitly construct an estimate of the nearest point
on the image patch manifold. Hence, we might hope to do better by
making this implicit goal explicit in our algorithm.

However, one of the obstacles to using manifold models for
patches is the problem of describing the whole image in terms of
the manifold-modeled patches. For example, complex nonparamet-
ric Bayesian models [16] and Gaussian mixture models [17, 18]
have been applied to describe the manifold corresponding to a single
patch, but neither extends readily to the case of overlapping patches.
Peyré in [13] regularizes inverse problems by requiring the overlap-
ping patches to trace a two-dimensional trajectory along the mani-
fold. However, the main drawback of this method is the computa-
tional expense of optimizing over all such trajectories on the densely-
sampled non-linear patch manifold.

The idea of representing images as lying on the intersection
of several manifolds, each corresponding to different overlapping
patches, was proposed in our previous work [19] along with an ef-
ficient kernel-based method of finding such intersections. Although
the solution can be expressed in closed form in the kernel-induced
feature space, solving the preimage problem to bring it to the input
space can significantly degrade the quality of the final result and im-
poses additional computational burden. Moreover, the requirement
that training sets of samples have the dimension of the whole im-
age rather then individual patches makes the method impractical for
processing large images.

In this paper, we will show a way to overcome these drawbacks
and present a robust and memory-efficient method for regularization
of any linear inverse problem in image processing with the overlap-
ping patch manifold model. While learning the manifold geometry
with kernel PCA we combine both stages of the algorithm (namely,
finding the intersection and its preimage) in a single iterative proce-
dure, which ensures the existence of a suitable solution in the origi-
nal space. Furthermore, we learn the patch manifold only once and
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distribute its description to all patch positions to enable processing
of images of significantly larger size. Finally, the iterative nature
of the algorithm allows us to incorporate additional constraints and
apply the same framework not only for denoising but also for reg-
ularization of compressive sensing reconstruction, inpainting, and
other inverse problems. The obtained results exhibit exceptional ro-
bustness to noise, often show nearly perfect reconstruction, and are
comparable with state-of-the-art methods.

The organization of this paper is as follows. In Section 2, we
will introduce the proposed model of images with an explanatory
example and then will formalize it in Section 3. Our kernel-based
approach for finding the intersection of patch-manifolds is explained
in Section 4. Section 5 shows the results of applying our algorithm
for regularization of several problems in image processing.

2. AN INTERSECTING MANIFOLDS MODEL OF IMAGES
Consider the entire space of D-pixel images. For any p × q-area of
the image pixel grid, there is a corresponding d = pq-dimensional
subspace of RD . The manifold model for image patches allows us
to assume that such a p× q patch lies on or close to a δ-dimensional
non-linear manifoldM (with δ < d) within this subspace. At the
same time, the other D− d pixels of the image are unconstrained by
this patch, so the whole image is allowed to lie on a (D − d) + δ-
dimensional manifoldMm ⊂ RD . Because there is one such mani-
fold constraint corresponding to each of M overlapping patches, the
image itself lies at or close to the intersection of all these manifolds
Mm, m = 1, . . . , M .

To illustrate this, consider the toy example of an image with only
three pixels. It can be regarded as a combination of two overlapping
2-pixel patches (Fig. 1). Suppose that each of them is restricted to
lie on some 1-dimensional manifold, e.g., a unit circle in R2. This
is equivalent to constraining the whole image to lie on the side of a
cylinder in R3. Therefore, any images that conform to this model
lie on the intersection of both cylinders and solve the system of non-

linear equations
{
x2 + y2 = 1
y2 + z2 = 1

.

Fig. 1. Left: Covering of a three-pixel image with two overlapping
patches. Middle: Two cylinders in R3 created by constraining each
of the image patches to lie on the unit circle. Right: The result of
using our algorithm to map randomly-generated points to the nearest
points on the manifolds’ intersection (see Section 5.1).

3. INTERSECTION OF MANIFOLDS AS AN
OPTIMIZATION PROBLEM

In this section, we will examine how to translate the manifold in-
tersection criterion into a regularization term for inverse problems.
First, to formalize the model, consider M (possibly overlapping)
patches of an image y. Let Em, m = 1, . . . , M , be d × D patch
extraction matrices with entries (Em)i,j = 1 if the jth pixel of an
image corresponds to the ith pixel of the mth patch and 0 other-
wise. Now the mth patch of the image y can be written (in vector
form) as Emy. Although the final solution admits any combination
of patches, in our examples in Section 5, we will cover an image
with L < pq randomly-offset grids, each segmenting the image into

a layer of non-overlapping p × q patches (disregarding all partial
patches). We then combine the patches from all L layers to obtain
the M overlapping patches.

The assumption that the desired image y ∈ RD lies on or close
to the intersection of several manifolds suggests a regularization for
inverse problems that minimizes the Euclidean distances to each
manifold d (y,Mm) = inf

x∈Mm

d (y,x). In contrast to our previ-

ous work [19], here we recognize that since each manifold Mm

is parallel to D − d axes, these coordinates do not affect the dis-
tance. Therefore, d (y,Mm) = d (Emy,M), whereM ⊂ Rd is
the patch manifold. For example, we could measure the distances
from E1y and E2y to the unit circle rather then the distances from
y to each cylinder above.

Our proposed patch-based regularization term thus becomes:

min
y

M∑
m=1

wmd
2 (Emy,M) , (2)

where the weights wm ≥ 0 can be chosen to control the distances
from a solution to each manifold if their intersection set is empty.
We will set wm = 1 for all m in our experiments in Section 5.

This regularization term will encourage all overlapping patches
to conform to the manifold model simultaneously, finding an inter-
section if it exists, as we desired. We examine how to efficiently
minimize it in the next section.

4. FINDING THE INTERSECTION OF THE MANIFOLDS
4.1. Brief review of kernel methods
Our approach to minimizing Eq. 2 uses the kernel trick [20] as an ef-
ficient and elegant way to learn the non-linear structure of the man-
ifoldM. The main idea of kernel methods is to map data points by
some non-linear transformation Φ : Rd → H to aDH−dimensional
feature spaceH (withDH > d), in which they can be analyzed with
linear algorithms. Efficiency is gained by the fact that the images
Φ (x) do not need to be computed explicitly. Instead, the kernel
function κ (xi,xj) = 〈Φ(xi), Φ(xj)〉H is defined to represent the
inner products in the feature space. Eventually, this yields a non-
linear solution when mapped back to the original space. Please see
[20] for more details of kernel methods.

In particular, Kernel Principal Component Analysis (KPCA)
[21], a kernel trick extension of the PCA algorithm, is one of the
most powerful known methods for learning a manifold from its
samples. Indeed, other popular manifold learning algorithms, such
as Laplacian Eigenmaps [22], Locally Linear Embedding [23], and
ISOMAP [24], were shown in [25, 26] to be special cases of it. Its
effectiveness has been proven in many signal processing settings
[27, 28, 29].

4.2. Optimization problem in feature space
The key idea of KPCA is that, for an appropriate kernel, in the in-
duced feature space, the manifold becomes an affine δH-dimensional
subspace U that can be parametrized by PCA. Then the initial crite-
rion (2) becomes equivalent to unconstrained minimization of:

J (y) =
1

2

M∑
m=1

wmd
2 (Φ (Emy) , U) , (3)

where d2 (Φ (Emy) , U) = ‖Φ (Emy)− PU (Emy)‖2H is the
squared distance from the image Φ (Emy) to its projection PU (Emy)
onto the subspace U in feature space. We note that this functional
is similar to the preimage regularization term in the Robust KPCA
algorithm of Nguyen and De la Torre [30], to which it reduces for
M = 1. Effectively, we will solve both intersection and preim-
age problems simultaneously, which will ensure the existence of a
suitable solution in the input space.
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Let Φ (X) be a DH × n matrix, whose columns Φ (xi) ∈ H
are the images of the training samples xi ∈ Rd, i = 1, . . . , n, we
will use to learn the manifoldM. The corresponding subspace U in
the feature space is then estimated via its principal components U =
Φ (X)α and the sample mean m = 1

n
Φ (X)1. Here 1 denotes the

vector of ones and α is an n×δH matrix of scaled eigenvectors of the
centered Gram matrix K̄ =

(
I− 1

n
11T

)
K
(
I− 1

n
11T

)
, where

Ki,j = κ (xi, xj). See [20, 21, 25] for more details of KPCA.
Now, for a patch Emy, the projection of Φ (Emy) onto U is:

PU (Emy) =UUTΦ (Emy) + (I−UUT)m (4)

=Φ (X)ααTkm + Φ (X)µ ,

where km is a vector with entries [km]i = κ (xi, Emy) for i =

1, . . . , n, and µ = 1
n

(
I−ααTK

)
1. The distance from Φ (Emy)

to the subspace U in Eq. 3 is then:

d2 (Φ (Emy) , U) = ‖Φ (Emy)− PU (Emy)‖2

= κ (Emy, Emy)− kT
mααTkm − 2kT

mµ + µTKµ. (5)

4.3. Iterative optimization of the regularization term
Provided that the kernel function is differentiable, J (y) can be min-
imized, for example, with the gradient descent algorithm. How-
ever, an iterative fixed-point method can also be used for rbf ker-
nels [27, 30]. In this paper, we restrict our attention to the Gaussian
kernel κ (x,y) = exp

(
− 1
σ
‖x− y‖2

)
and derive both types of so-

lution for it.
Using Eq. 5 and noting that∇yf (Emy) = ET

m∇Emyf (Emy)
the gradient∇yJ (y) becomes:

∇yJ (y) =
1

2

M∑
m=1

wmET
m∇Emyd

2 (Φ (Emy) ,M)

= −
M∑
m=1

wmET
mk

′
mνm, (6)

where νm = ααTkm + µ and k
′
m denotes a D × n matrix with

columns κ
′
(xi,Emy) = 2

σ
[km]i (xi −Emy), i = 1, . . . , n.

Now, defining h to be some (possibly variable) step size, the
result of the kth iteration is found as:

y(k) = y(k−1) − h · ∇yJ
(
y(k−1)

)
. (7)

Alternatively, setting Eq. 6 to 0 and solving it for y results in the
following recursive relation:

y(k) =

∑M
m=1 wm

[
ET
mXDmν

(k−1)
m + v

(k−1)
m

]
∑M
m=1 wmkT

mν
(k−1)
m

, (8)

where v
(k−1)
m = kT

mν
(k−1)
m

(
I−ET

mEm
)
y(k−1) and Dm is an

n × n diagonal matrix with entries [Dm]i = [km]i. Since the
terms of Eq. 6 are computed for each manifold separately, this gives
the flexibility of using patches of different sizes and shapes and of
choosing different kernels to achieve the best approximation of every
manifold, if desired.

4.4. Regularizing inverse problems with our criterion
Finally, we look at how to use J (y) (Eq. 3) as a regularization term
for inverse problems, i.e., to solve min

y
J (y) s.t.Wy = b. For

this, we propose to use a modified Landweber iteration [31, 32]:

y(k) = λ
[(

I−W†W
)
ỹ(k−1) + W†b

]
+ (1− λ) ỹ(k−1), (9)

where ỹ(k−1) denotes the result of computing either Eq. 7 or 8 based
on the value y(k−1), and W† is the Moore-Penrose pseudoinverse
of W. The regularization parameter λ, 0 ≤ λ ≤ 1 is set to 1 in
the noiseless case. When noise in b would prevent the solution from
lying on the intersection of all manifolds, λ < 1 can be used to relax
adherence to the constraint Wy = b.

Although the uniqueness of the solution is not guaranteed, start-
ing the iterations with the least squares solution to (1), i.e., y(0) =
W†b, and using λ = 1, results in nearly perfect compressive sens-
ing reconstruction of the examples in Section 5.3. For inpainting, in
Section 5.4, we initialize the missing pixels by linearly interpolating
the boundaries of the gap in both vertical and horizontal directions
with successive averaging, and we set λ = 1 to keep the values
of known pixels unchanged on each iteration. Finally, for denois-
ing, ynoisy = Iy∗ + n, in Section 5.2, Eq. 9 simply reduces to
y(k) = λynoisy + (1− λ) ỹ(k−1). We initialize the iterations with
y(0) = ynoisy and set λ = 0, allowing the algorithm to converge
to the nearest local minimum of J (y) to ynoisy , i.e., the nearest
intersection point of the manifolds.

5. EXPERIMENTS AND DISCUSSION
First, we consider an illustrative toy example of finding the intersec-
tion of two cylinders in R3, described in Section 2. Then we apply
our algorithm for denoising, compressive sensing, and inpainting of
natural images whose patches well conform to a manifold model
(Fig. 2). For all examples in this section, we use the gradient descent
version of the algorithm (Eq. 7) with the fixed step size h = 1.

Fig. 2. Natural images with enlarged regions used as examples.

5.1. Intersection of manifolds in 3D
As an initial proof of concept that our algorithm accurately finds
the true manifolds’ intersection, we use it to map a cloud of ran-
domly generated points centered at the origin to their closest points
on the intersection of two cylinders. The geometry of the cylinders
is learned from samples of the unit circle in R2 as the training set
of patches. The results accurately trace the sought intersection, as
shown on the right panel of Fig. 1. Notice that learning the result-
ing non-differentiable curve directly in R3 would be a significantly
more difficult problem requiring a larger set of higher-dimensional
training samples.

5.2. Image denoising
In this section, we look at using our overlapping-patch regularization
in an image denoising problem. In this and future examples, we
will learn the manifolds from training sets of 1500 5 × 5 patches,
extracted from other similar images. For the zebra image, we use the
Gaussian kernel parameter σ = 55 and choose δH = 75. Similarly,
for the roof tiles image, σ = 16 and δH = 105. All training and
testing images are scaled to the range [−1, 1].

The results of denoising the images corrupted with zero-mean
Gaussian noise are presented in Fig. 3. To quantify the performance
of our algorithm, we use peak signal-to-noise ratio (PSNR), defined

as PSNR = 10 log
maxi,j I2i,j

1
N

∑
i,j(Ii,j−Ji,j)

2 , where I and J are the orig-

inal and reconstructed N -pixel images, respectively. Modeling the
manifold structure from the training set of patches allowed us to

5391



Original Noisy

4.03 dB

Our method

16.5 dB

BM3D

15.0 dB

12.0 dB 22.1 dB 23.1 dB
Fig. 3. Denoising of natural images. Our algorithm accurately re-
constructs high contrast edges, as well as details of texture, and per-
forms similarly to state-of-the-art BM3D in terms of PSNR with en-
hanced visual quality. Numbers represent corresponding PSNR.

achieve results comparable or slightly better in terms of PSNR than
the state-of-the-art BM3D algorithm [10] with better visual quality.

Moreover, the best potential quality of reconstruction, all other
conditions being equal, can be achieved by considering much fewer
overlapping patches than maximally available (see Fig. 4). In both
examples, images are covered by L = 8 overlapping layers of
patches instead of the maximum 25, which significantly decreases
computation time. On the other hand, using only L = 1 layer in
the case of non-overlapping patches produces much worse results,
proving the overlapping patch model advantageous.

Fig. 4. Reconstruction PSNR of the zebra image as a function of the
number of layers of patches. A significant improvement is gained
by using overlapping patches (L > 1), but no major improvement
could be achieved by considering more than eight layers of patches.

5.3. Compressive sensing reconstruction
In this section, we look at the application of our regularization to a
compressive sensing reconstruction problem. We apply the method
of iterative projections onto the constraint subspace as described
in Section 4.4 with parameter λ = 1 to reconstruct 64 × 64 =
4096 pixel images from 400 Bernoulli random measurements (a
measurement ratio of< 10%). Since the underlying manifold model
can be chosen to provide an accurate description of the considered
class of images, our algorithm results in nearly perfect reconstruc-
tion (Fig. 5). It greatly outperforms basis pursuit run on 64 8 × 8
non-overlapping patches, assuming sparsity in a dictionary learned
with the K-SVD algorithm, clearly demonstrating the advantage of
using overlapping vs. non-overlapping patches. Our results have bet-
ter visual quality and higher PSNR than those obtained with recur-
sive spatially adaptive filtering based on the BM3D algorithm [12]
from the same number of low-frequency Fourier measurements.

5.4. Image inpainting
Finally, in this section we assess the performance of our regulariza-
tion term on an image inpainting task. We see that the results (Fig. 6)
are similar to or better then those of the exemplar-based method of
Criminisi et. al. [3].

Original Our method

21.0 dB

Sp. adaptive filt.

18.0 dB

Basis pursuit

12.02 dB

24.8 dB 21.2 dB 17.7 dB
Fig. 5. Compressive sensing reconstruction. Results of our algo-
rithm are consistent with the learned model and nearly perfectly
match the original images. Spatially adaptive filtering is based on the
state-of-the-art BM3D algorithm [12]. Numbers represent PSNR.

Original image Corrupted Our method

24.2 dB

Method of [3]

15.5 dB

32.0 dB 32.8 dB
Fig. 6. Results of image inpainting. Our algorithm performs simi-
larly to or better than the patch-based method of Criminisi et. al. [3].

6. CONCLUSION
In this paper, we proposed a unified method for regularization of any
linear inverse problem in image processing based on an intersecting
manifolds model of overlapping patches. We applied the kernel trick
to efficiently approximate the patch-manifold in the induced feature
space and combined the iterative preimage method with an intersec-
tion finding algorithm, which ensured the existence of a solution in
the input space and increased overall robustness. We then proposed
a Landweber iteration to allow this regularization term to be used
with a variety of inverse problems in image processing. Provided
that the set of image patches is well-approximated by a manifold
that can be linearized in the kernel-induced feature space, our algo-
rithm often achieves almost perfect reconstruction. The experimen-
tal results show that our approach vastly outperforms methods based
on a non-overlapping patch model. Moreover, given an appropriate
patch manifold model, it can even slightly outperform in PSNR (with
enhanced visual quality) other algorithms that take a non-manifold-
based approach to modeling overlapping image patches. This shows
that a manifold model of overlapping patches is an excellent choice
for regularizing inverse problems in image processing. Finding the
optimal kernels for particular classes of images as well as establish-
ing the theoretical convergence properties of our method are direc-
tions for future work.
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