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ABSTRACT

In computer-assisted language learning (CALL), speech
data from non-native speakers are usually insufficient for
acoustic modeling. Subspace Gaussian Mixture Models
(SGMM) have been effective in training automatic speech
recognition (ASR) systems with limited amounts of training
data. Therefore, in this work, we propose to use SGMM
to improve the fluency assessment performance. In partic-
ular, the contributions of this work are: (i) The proposed
SGMM acoustic model trained with native data outperforms
the MMI-GMM/HMM baseline by 25% relative, (ii) when
incorporating a small amount of non-native training data, the
SGMM acoustic model further improves the performance of
fluency assessment by 47% relative.

Index Terms— Computer Assisted Language Learning
(CALL), Subspace Gaussian Mixture Model (SGMM), Au-
tomatic Speech Recognition (ASR), Goodness Of Pronuncia-
tion (GOP), Fluency assessment

1. INTRODUCTION

Acquiring second or third languages is getting more popu-
lar with the trend of globalization. This demand is outpacing
the availability of human language experts and teachers, thus
driving an urgent need for computer-assisted language learn-
ing (CALL). CALL systems provide an easy interface for lan-
guage learners. Unlike traditional language learning scenar-
ios, CALL allows learners to practice on their own in private
at their own pace. Even though automatic and self-learning
options might not be effective as engaging learning with hu-
man teachers, CALL systems that emulate human assessment
and scoring can save a lot of manual labor and time [1].

A CALL system usually provides feedback of the speech
spoken of the second language (L2) learner. This feedback
can be categorized into two levels: (1) Segmental level, which
focuses on the pronunciation accuracy of the individual pho-
netic units [2, 3]. (2) Suprasegmental level, which focuses
on the rhythm, stress, and intonation of the non-native speech
[4, 5]. Unlike most studies in CALL, which only focus on
either one of these two aspects, in this work, we attempt to
model the fluency level of non-native speakers using both as-
pects even though it is a more challenging task.
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The underlying mechanism for generating such language
learning feedback is usually implemented as an automatic
fluency assessment system. Automatic fluency assessment
of non-native speech takes advantage of techniques from re-
lated fields such as language identification [6] and automatic
speech recognition (ASR) [7]. For example, the goodness
of pronunciation (GOP) [8] score derived from the posterior
probability at the phonetic level is often used to quantify the
segmental aspect of pronunciation quality. On the other hand,
fluency assessment at the suprasegmental level could be mod-
eled by prosodic features, such as the speed of articulation
and frequency of pauses [4, 5, 9]. Therefore, the characteri-
zation power of the acoustic model plays an essential role in
automatic fluency assessment.

Compared to native speech, higher variations are observed
in non-native speech. These variations are influenced by var-
ious factors [10] like speaker’s native language(s) and the
amount of exposure to the target language. To build supe-
rior acoustic models that characterize those variations, some
researchers employ discriminative training technique to en-
hance the acoustic models [3, 11], while other researchers
train deep neural networks [12, 13, 14] to refine the acoustic
models. Various machine learning methods are explored to
model the variations in non-native speech [15, 16, 17]. When
incorporating non-native data to train the acoustic model, one
challenge is the amount of available non-native training data
is often limited. To compensate for the lack of non-native
data, speaker adaptation techniques are often applied [11, 18]
by using a small amount of non-native data.

In this work, we utilize Subspace Gaussian Mixture Mod-
els (SGMM) [19] to characterize the acoustic properties of
non-native speech. The speaker information derived from
SGMM models have provided complementary information
for automatic language recognition [20]. SGMMs have also
shown great advantage in multi-lingual speech recognition
[21] and non-native speech recognition [22]. The success
of SGMM can be attributed to its compact parameter shar-
ing mechanism, which is especially effective when training
data is limited. Given the effectiveness of prior work adopt-
ing SGMM, we expect SGMM to be suitable in fluency as-
sessment in CALL applications. In this paper we empirically
show that SGMM outperforms a MMI-GMM/HMM baseline
in assessing fluency scores of non-native speakers when only
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using native Mandarin training data. In addition, further im-
provements are shown when adding a small amount of non-
native data to the training set.

2. SUBSPACE GAUSSIAN MIXTURE MODEL FOR
AUTOMATIC FLUENCY ASSESSMENT

2.1. Subspace Gaussian Mixture Model

The Subspace Gaussian Mixture Models can be formulated as
follows:

I
p(x|j) = ijiN(X; His 2i) )]
i=1
Wi = Mv; 2
I
wyi = exp(w] v;) /(Y exp(w vs)) ©)
k=1

where p(x|7) is the probability model for state j, I is the num-
ber of shared mixtures, and v; is the state-specific vector. 3;
is a full covariance matrix for i-th Gaussian; it is shared glob-
ally among all the states for this Gaussian, p;; and wj; are
mean and mixture weights for states j respectively. Unlike the
conventional Gaussian mixture model training, the state mean
and mixture weights are not trained directly, they are derived
from globally shared mean matrix M; and weight vector w;
using a low dimensional vector v;.

As the full covariance matrix is shared across states, an
SGMM model has fewer parameters than the conventional
GMM model. This means we can use less training data to
achieve comparable models without losing accuracy. Itis very
useful in language learning task, as we are always facing the
problem of insufficient foreign accented data.

2.2. Automatic fluency assessment
2.2.1. Fluency assessment features

Even though fluency is more often associated with the
suprasegmental aspect of speech, it is usually an implicit
prerequisite that a fluent speaker is able to achieve segmental
competency (i.e., to pronounce words in an articulate man-
ner). Therefore, in this work fluency is modeled from both
segmental and suprasegmental aspects (see Table 1).

The goodness of pronunciation (GOP) [8] and its statis-
tics are used to characterize the segmental level of non-native
speech. GOP is a phone level confidence measure to gauge
how differently a particular phone is pronounced compared
with a native model. Given phone p, the GOP score is:

L P(Olp)P(p)

GOP(p) = — max,eo P(0]q)p(q) @

where O is the acoustic observation, @ is the set of all phones,
n is the number of frames. P(O|p) stands for the likeli-
hood of the observation on model p, it can be obtained by

performing forced alignment with the canonical transcription.
maxgeq P(O|q) is the maximum likelihood of all the phones
in the phonetic inventory, often derived from a phone-loop
decoding process.

Prosodic features are important in modeling the supraseg-
mental level of fluency [4]. For example, a fluent L2 speaker
is more likely to have a higher speaking rate and less hesita-
tion. In this work, we characterize prosody using features de-
rived from ASR results. Specifically, they are rate of speech,
phonation ratio, articulation rate and mean pause length (see
Table 1 for more details.)

2.2.2. Performance measurement

Correlation score is a widely adopted performance measure-
ment for fluency assessment. Let x presents a set of fluency
labels given by human raters and y denotes system derived
fluency labels, their correlation score is estimated as:

Do (i — ) (yi — )
Vi@ — 22/ (v — )
where T and ¥ are the means of x and y, n is the number of

test. A high correlation score indicates the system has good
performance in fluency prediction.

&)

3. CORPUS AND EXPERIMENTAL SETUP

3.1. Native Mandarin corpus

The Chinese Mandarin Speech Recognition Database (King-
ASR-214) ! is used for the acoustic model training. The cor-
pus contains speech collected over 4 different mobile operat-
ing systems: iOS, Android, Windows Mobile and Symbian.
The speech data are recorded in 16 KHz. There are 1000 gen-
der balanced speakers with 444.6 hours of speech in total.

3.2. Non-native corpus: iCALL

The non-native speech corpus used in this study is iCALL
corpus [23]. In this corpus, 300 beginning learners of Man-
darin Chinese were asked to read 300 Pinyin prompts, includ-
ing 200 words (each consists of 2-4 characters) and 100 sen-
tences. Each speaker received a different set of utterances.
The speech was sampled at 16 kHz and recorded in quiet of-
fice rooms. The speech data are transcribed in Pinyin through
perceptual listening tasks. These transcriptions represent the
surface pronunciation — mistakes made by the speaker were
transcribed as is — while the Pinyin prompts are served as the
underlying canonical pronunciation.

3.2.1. Perceptual fluency scoring guidelines

For each speaker, one third of the utterances are examined by
three human judges, who rated the fluency level on the scale
of 1 to 4 (where 4 indicates the most fluent).

Uhttp://www.speechocean.com/en-ASR-Corpora/839.html
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[ Featuretype | Specific feature [ Description

GOP GOP score for each phone in phone inventory
segmental AVE INIT GOP Average GOP score for initial phones
AVE FINAL GOP | Average GOP score for final phones
ROS Rate of speech, number of phones per frame
suprasegmental PTR Phonation/time ratio, total duration of speech w/o pause/total duration of speech
ART Articulation rate, number of phones per seconds excluding pause
MLP Mean length of pauses

Table 1: Features for fluency assessment

A first set of scoring guidelines were established through
literature survey and consulting experienced human judges.
The scoring guidelines were further refined through pilot
tests. Discrepancies among scores rated by the human judges
in the pilot test were resolved through discussion, and used to
refine the scoring guidelines. The number of pronunciation
errors in each utterance was the main criteria for scoring.
Phonetic errors were penalized more heavily than tonal ones,
as phonetic errors affect intelligibility more.

3.2.2. Consistency tests for perceptual fluency scores

After establishing the scoring guidelines, another consistency
test was conducted to ensure the scores from the human
judges were properly calibrated. A set of 30 unique utter-
ances were randomly selected for performing a consistency
test. These 30 utterances were duplicated (i.e. total 60 ut-
terances) and presented randomly to each human rater. The
correlation coefficients for intra-rater scores and those for
inter-rater scores are shown in Table 1(a). The Cohen’s
Kappa coefficients are reported in Table 1(b) to quantify the
inter-rater agreement. Consistency tests are conducted peri-
odically to ensure the scores from the human judges maintain
such desired quality.

R1 R2 R3 Kappa

RI | 1.00 | 0.89 | 0.90 R1R2 | 0.641

R2 | 0.89 | 095 | 093 R2R3 | 0.709

R3 | 090 | 093 | 095 RIR3 | 0.698
(a) Correlation (b) Kappa

Table 2: Inter-rater and intra-rater correlation and Kappa

Germanic Train Test Roman Train Test Slavic  Train Test Others  Train Test

UK 24 6 Italy 13 4 Russia 19 6 Unknown 27 9
USA 37 12 France 22 7 Ukraine 2 0 Hungary 2 0
Canada 13 3 Mexico 3 1 Croatia 2 0 Greece 3 1
Australia 3 1 Spain 8 2 Bulgaria 1 0 Georgia 3 1
Germany 8 2 Argenti 1 0 Poland 3 1 Finland 1 0
Sweden 3 1 Brazil 6 1 Belarus 2 0
Switzerlan 1 0
Ireland 2 0
Norway 3 1

94 26 53 15 29 7 36 11

Fig. 1: Number of speakers in iCALL train and test sets

As inter-rater consistency is high, we proceeded to assign
each rater a distinct set of utterances to score in order to save
time. This human-rated data set is split into a training sub-
set and a test subset of distinct speakers. Gender and utter-
ance length are balanced across the subsets. Figure 1 shows
the number of speakers in the iCALL training and test set,
the speakers are grouped into 4 broad categories according to

their country of origin [23]. There are a total of 14800 and
5810 utterances in the training and test sets, respectively.

4. AUTOMATIC FLUENCY ASSESSMENT

4.1. Experimental Setup
4.1.1. Baseline MMI-GMM/HMM ASR Systems

A baseline ASR system was trained from native Mandarin
Chinese (as described in Section 3.1). The corpus was split
into training and test sets. The training set has 326000 utter-
ances from 975 speakers, while the test set (King-test) con-
sists of speech data from 25 speakers, with 1980 utterances in
total. The acoustic feature consists of 13 dimensional MFCC
feature, 1 dimensional tone feature, and their derived deltas,
acceleration and third-order deltas, resulting in 56 dimension.
The acoustic model consists of 175 phones and 8534 tied
states.

The baseline acoustic model is a GMM-HMM model
discriminatively trained with Maximum Mutual Informa-
tion (MMI) criterion, this model is denoted as MMI native.
Another MMI model (MMI native+iCALL) is trained from
both King-ASR-214 and iCALL training set using the same
parameter set up as MMI native.

4.1.2. SGMM ASR systems

An SGMM model (SGMM native) was trained on top of the
MMI native model with the same set of native training data.
It is configured with 800 shared mixture components and
6081 states. To learn the pronunciation variability of foreign
speaker’s, another SGMM model is built on top of the MMI
native model by using the iCALL training set and the native
training set. It uses the same configuration as the SGMM
native model, we refer this model as SGMM native+iCALL.
Note that the surface pronunciation (derived by raters) of the
iCALL training set is used in the above mentioned acoustic
model training process.

Table 3 reports the ASR performance of the acoustic
models on the native test set (King) and non-native test
set (ICALL). The King test set is decoded with a 5-gram
language model while the iCALL test set is decoded with a
Pinyin loop. The results show that the SGMM models outper-
form their MMI counterparts on both native and non-native
test set. The accuracy of the non-native set is improved by
incorporating non-native training data while the accuracy of
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Test set | MMI native | MMI native+iCALL | SGMM native | SGMM native+iCALL
King 30.8 38.5 29.0 48.0
iCALL 66.6 64.3 65.6 51.3

Table 3: Performance of acoustic models, King test set in character error rate and iCALL test set in phone error rate

the native test set is degraded. Intuitively, a larger pronun-
ciation variance can be observed among non-native speakers
due to different nationality and language group. The acous-
tic models trained from those non-native speech are adapted
to capture those pronunciation characteristics which are not
observed in native speech.

4.2. Fluency assessment results

A gender-dependent support vector machine (SVM) classifier
is built for each fluency level following the one-vs-rest crite-
rion. Hence there are 2 models for each of the 4 fluency levels
(one female and one male). Each test utterance is evaluated

on a set of gender-matched SVM models.
0.44 0.43
I |

SGMM
native+iCALL

Others MmN 0.43

mall Romance N 0.43
Slavic W 0.49
Germanic . 0.42

u 2-4 characters
long sentence

0.32
0.29 0.3

0.24 53 022 024 473

I :

MMI native MMI SGMM native
native+iCALL

Correlation with human rater

Fig. 2: Fluency assessment results of different acoustic models

Figure 2 illustrates the correlation scores of the four
acoustic models described in section 4.1. We observe the
following trends:

1) SGMM outperforms MMI-GMM/HMM baselines in
fluency prediction. The results show that the two SGMM
models consistently achieve higher correlation with the hu-
man raters than their corresponding baseline MMI models.
We believe it is attributed to the compactness of the SGMM
architecture which makes it more sensitive to the variabil-
ity of the non-native pronunciation and speaking style. The
correlation increases by 25% relative (from 0.24 to 0.30) by
using SGMM native model instead of the MMI native model.
2) Non-native training data improves fluency prediction.
Higher fluency correlations are obtained by incorporating
non-native speech in both MMI and SGMM model training.
Adding non-native training data improves the MMI native
model by 33.3% (0.24 to 0.32) relative and improves the
correlation of SGMM native model by 46.7% relative (0.30
to 0.44). In addition, fluency assessment of the MMI na-
tive+iCALL model gives slightly better performance (6.67%
improvement) than the SGMM native model. This observa-

tion implies that SGMM’s acoustic characterization ability
can partially make up for the lack of non-native training data.
Thus SGMM is a good alternative to MMI-GMM/HMM
models in scenarios where non-native data is unavailable.

3) Homogeneity of first language background affects flu-
ency scores. The correlation score of SGMM native+iCALL
system on the four non-native speaker groups are also shown
in Figure 2. The fluency prediction of the Slavic speakers
outperforms the other three groups of speakers. One possible
reason is that there is less first language variation in the Slavic
group. As shown in Figure 1, 6 out of 7 test speakers in the
Slavic group are from Russia.

4) Utterance length affects fluency scores. To analyze how
utterance length might influence fluency scores, the correla-
tion coefficients are broken down into those from short utter-
ances (2-4 characters) and long utterances in Figure 2. We see
that automatic scores of short utterances consistently show
higher correlation with human scores for all four models.

Rated Fluency Score

1 2 3 4
1 23.8|17.0| 0.0

=% 0|2]19.4(25.7|29.9|24 8
258
5 2 8[3[22.0[13.4 (3222322
=
4] 02] 1.3 33.7-

Fig. 3: Confusion matrix of SGMM native+iCALL

Figure 3 shows the confusion matrix (in percentage) of the
automatic fluency prediction from the SGMM native+iCALL
model. The automatic fluency scores predict level 4 and level
1 the best. The fluency level 3 and 2 are less accurately pre-
dicted. This trend actually follows that of human evaluation
as this discrepancy is also observed in human ratings, where
extreme scores are easier to reach rater-consensus and there
is more subjectivity when giving intermediate scores.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed using SGMM to characterize the
acoustic properties of non-native speech. The SGMM model
outperforms the MMI-GMM/HMM model in automatic flu-
ency assessment. An SGMM model trained from a small
amount of non-native data further improves the fluency corre-
lation than SGMM model trained with only native data.

A speaker’s L2 pronunciation is often influenced by his
native language. In future work, we plan to use SGMM to
further refine non-native speakers into subgroups based on
their first language background. For example, the Romance
language speakers are more likely to de-aspirate their stop ini-
tials [23], which is potentially due to phonemic characteristics
of their first language.

5387



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

6. REFERENCES

M. Peabody, Methods for pronunciation assessment in
computer aided language learning, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2011.

A. Lee and J. Glass, “A comparison-based approach to
mispronunciation detection,” in Spoken Language Tech-
nology Workshop (SLT), 2012.

K. Yan and S. Gong, ‘“Pronunciation proficiency eval-
uation based on discriminatively refined acoustic mod-
els,” International Journal of Information Technology
and Computer Science, pp. 17-23,2011.

C. Cucchiarini, H. Strik, and L. Boves, “Quantitative as-
sessment of second language learners fluency by means
of automatic speech recognition technology,” Journal
of the Acoustical Society of America, vol. 107, no. 2, pp.
1989-1999, 2000.

C. Cucchiarini, H. Strik, D. Binnenpoorte, and L. Boves,
“Towards an automatic oral proficiency test for dutch
as a second language: Automatic pronunciation assess-
ment in read and spontaneous speech,” in Proceedings
of Instil, 2000.

H. Li, K. A. Lee, and B. Ma, “Spoken language recog-
nition: From fundamentals to practice,” Proceedings of
the IEEE, vol. 101, pp. 1136 — 1159, May 2013.

X. Huang and L. Deng, “An overview of modern speech
recognition,” in Handbook of Natural Language Pro-
cessing, Second Edition, N. Indurkhya and F. J. Dam-
erau, Eds. CRC Press, Taylor and Francis Group, Boca
Raton, FL, 2010, ISBN 978-1420085921.

S. Witt, Use of Speech Recognition in Computer-
assisted Language Learning, Ph.D. thesis, Cambridge
University, 1999.

F. de Wet, C. van der Walt, and T. Niesler, “Automatic
large-scale oral language proficiency assessment,” in In-
terspeech, 2007, pp. 218-221.

J. E. Flege, “Factors affecting degree of perceived for-
eign accent in English sentences,” Journal of the Acous-
tical Society of America, vol. 84, no. 1, pp. 70-79, 1988.

X. Qian, H. M. Meng, and F. K. Soong, “Discrimina-
tively trained acoustic model for improving mispronun-
ciation detection and diagnosis in computer-aided pro-
nunciation training (CAPT),” in Interspeech, 2010.

A. Lee, Y. Zhang, and J. Glass, ‘“Mispronunciation
detection via dynamic time wrapping on deep belief
network-based posteriorgrams,” in ICASSP, 2013.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

5388

X. Qian, H. M. Meng, and F. K. Soong, “The use of
DBN-HMMs for mispronunciation detection and diag-
nosis in L2 English to support computer-aided pronun-
ciation training,” in Interspeech, 2012.

W. Hu, Y. Qian, and F. K. Soong, “A new DNN-based
high quality pronunciation evaluation for computer-
aided language learning (CALL),” in Interspeech, 2013.

S. Wei, G. Hu, Y. Hu, and R. Wang, “A new method
for mispronunciation detection using support vector ma-
chine based on pronunciation space models,” Speech
Communication, pp. 896-905, 2009.

K. Truong, A. Neri, F. D. Wet, C. Cucchiarini, and
H. Strik, “Automatic detection of frequent pronuncia-
tion errors made by 12-learners,” in Interspeech, 2005,
pp. 1345-1348.

M. Goudbeek, A. Cutler, and R. Smits, “Supervised
and unsupervised learning of multidimensionally vary-
ing non-native speech categories,” Speech Communica-
tion, vol. 50, pp. 109-125, 2008.

F. Ge, L. Lu, C. Liu, F. Pan, B. Dong, and Y. Yan, “An
Mandarin pronunciation quality assessment system us-
ing two kinds of acoustic models,” in Research Chal-
lenges in Computer Science, ICRCCS, 2009, pp. 68-72.

D. Povey, “A tutorial-style introduction to Sub-
space Gaussian Mixture Models for speech recogni-
tion,” Tech. Rep., Microsoft Research, 2009.

O. Plchot, M. Karafit, N. Brummer, O. Glembek,
P. Matjka, E. V. de, and J. ernock, “A two-stage speaker
adaptation approach for Subspace Gaussian Mixture
Model based nonnative speech recognition,” in Pro-
ceedings of Odyssey 2012, The Speaker and Language
Recognition Workshop, 2012.

L. Burget, P. Schwarz, M. Agarwal, P. Akyazi, K. Feng,
A. Ghoshal, O. Glembek, N. Goel, M. Karafiat,
D. Povey, A. Rastrow, R. C. Rose, and S. Thomas,
“Multilingual acoustic modeling for speech recogni-
tion based on subspace gaussian mixture models,” in
ICASSP, 2010.

B. Li and K. C. Sim, “A two-stage speaker adaptation
approach for Subspace Gaussian Mixture Model based
nonnative speech recognition,” in Interspeech, 2012.

N. FE. Chen, V. Shivakumar, M. Harikumar, B. Ma, and
H. Li, “Large-scale characterization of mandarin pro-
nunciation errors made by native speakers of European
languages,” in Interspeech. IEEE, 2013, vol. I, pp. 803—
806.



