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ABSTRACT 

This paper presents new techniques with relevant 

improvements added to the primary system presented by our 

group to the Albayzin 2012 LRE competition, where the use 

of any additional corpora for training or optimizing the 

models was forbidden. In this work, we present the 

incorporation of an additional phonotactic subsystem based 

on the use of phone log-likelihood ratio features (PLLR) 

extracted from different phonotactic recognizers that 

contributes to improve the accuracy of the system in a 

21.4% in terms of Cavg (we also present results for the 

official metric during the evaluation, Fact). We will present 

how using these features at the phone state level provides 

significant improvements, when used together with 

dimensionality reduction techniques, especially PCA. We 

have also experimented with applying alternative SDC-like 

configurations on these PLLR features with additional 

improvements. Also, we will describe some modifications to 

the MFCC-based acoustic i-vector system which have also 

contributed to additional improvements. The final fused 

system outperformed the baseline in 27.4% in Cavg. 

 

Index Terms—Phone Log-Likelihood Ratios, SDC, 

dimensionality reduction. 

 

1 INTRODUCTION 

In this paper, we describe several modifications we have 

done to the final system that we presented for the Albayzin 

2012 LRE evaluation [1]. In this evaluation, our primary 

system outperformed the other systems thanks mainly to the 

fusion of different subsystems: 1) an acoustic system based 

on MFCC-SDC features, 2) a phonotactic system based on 

trigram posteriorgram counts, and 3) an acoustic system 

based on RPLP-SDC features. As most of current state-of-

the-art LID systems, all these subsystems make use of sub-

space projections in the form of i-vectors [2] that were 

calibrated and fused using multiclass logistic regression. In 

[3] it was shown that one of the main advantages of our 

system was the use of RPLP (Revised PLP) features which 

allowed the incorporation of noise-robust features, and the 

use of a phonotactic i-vector based system that uses non-

sparse n-gram counts estimated using the posterior 

probabilities output of a phoneme recognizer and trained 

using subspace multinomial models [4]. Finally, our best 

system is based on the fusion of the scores of four different 

sub-systems allowing the integration of various levels of 

perceptual cues as it is recommended in [5].  

In this paper, we will describe new enhancements done 

to the final system presented in the Albayzin evaluation. The 

main change has been the incorporation of a new kind of 

phonotactic subsystem that uses Phone Log-Likelihood 

Ratios features (PLLR) that have proved to improve both 

language [6] and speaker recognition systems [7]. Later, we 

will show how these features can be extended to provide a 

better performance thanks to the use of likelihood ratios at a 

phone state level, instead of a phone level, the addition of 

new coefficients based on the Shifted Delta Cepstra (SDC) 

philosophy [8], which we called Shifted Delta PLLR 

Coefficients (SDPC) and the use of PCA and HLDA 

dimensionality reduction techniques. 

The paper is organized as follows: Section 2 describes 

the database used for the evaluation. Section 3 explains each 

subsystem while section 4 shows the fusion results. Finally, 

section 5 presents the conclusions and future work. 

 

2 EVALUATION AND DATA DESCRIPTION 

The Albayzin LRE 2012 was an international evaluation 

organized by the Software Technologies Working Group of 

the University of the Basque Country with the collaboration 

of Niko Brümmer from Agnitio Research, in the context of 

the IberSpeech 2012 conference [9]. In comparison with its 

previous editions, this evaluation was more difficult as it 

changed the application domain from TV broadcast speech 

to any kind of speech found on Internet, without providing 

training data for some of the target languages (a common 

situation for low-resource languages) in two of the four 

conditions, and forbidding the use of any additional 

database. The provided audio files were extracted from 
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YouTube videos, with different length durations, channel 

conditions, number of speakers, etc. The files might contain 

music, noise and any kind of non-human sounds. All audio 

files used in our experiments were 16 KHz@16 bits in 

contrast with [3] where we used 8KHz@16 bits.  

Table 1 shows the statistics of the database and the 

number of files used in our setup and experiments. We will 

show results only on the main condition of the evaluation, 

i.e. plenty-closed, where the target languages were: Spanish, 

Catalan, Basque, Galician, Portuguese, and English. 

 

 Train Dev Eval 

No. Files 5115 458 941 

No. of clean files 3231 252 409 

No. of noisy files 1884 206 532 

Table 1. Dataset statistics 

 
3 SYSTEM DESCRIPTION 

In this section, we will describe each of the subsystems that 

we used and fused for creating the final systems. 

3.1 MFCC-SDC Acoustic System + i-vectors 

For this subsystem, for each audio file we extract 12 MFCC 

coefficients (including C0) from 24 Mel filter banks plus the 

energy for each frame. As Voice Activity Detector (VAD) 

we used the output from the BUT Hungarian phone 

recognizer suppressing all segments marked as silence or 

noise in the output. Then, a RASTA filter was applied to 

reduce short-term noise variations in each frequency sub-

band followed by a short-term Cepstral Mean and Variance 

Normalization (CMNV) normalization (instead of using 

global CMVN as [3]). After that, every 10 ms speech frame 

was mapped to a 56-dimensional feature vector generated 

from the concatenation of SDC features using the 7-1-3-7 

configuration. Then, in comparison with [3], we included 

feature warping [10] after removing the non-speech frames 

using the toolkit available at [11]. Finally, i-vectors of 400 

dimensions and using 512 Gaussians were trained following 

the same algorithm reported in [2], which is the optimum 

configuration. With respect to the same subsystem reported 

in [3], the use of the short-term CMVN and feature warping 

allowed us to improve the Cavg and Fact in 10.4% and 7.2% 

relative respectively. 

3.2 RPLP-SDC Acoustic System + i-vectors 

Proposed in [12] and [13], the Revised PLP (RPLP) features 

can be seen as a hybrid approach between calculating 

MFCC and PLP features, combining the best of both and 

providing as result noise-robust features. In [3] we showed 

that these features highly contributed to improve the final 

system and performed better than the MFCC subsystem in 

spite of using the same configuration, i.e. number of 

Gaussians, i-vector dimension, SDC, etc.  

In this work, the same modifications applied to the 

MFCC subsystem (i.e. the use of short-term CMNV and 

Feature Warping) did not provide any improvement. 

Therefore we kept the same subsystem reported in [3].  

3.3 Phone Log-Likelihood Ratio (PLLR) Features 

In [6] and [7] it is shown that the PLLR features can be 

successfully used for language and speaker recognition 

tasks. Its success is probably due to the simplicity of its 

calculation and because they can be easily integrated with 

the i-vector framework where the PLLR can be seen as an 

alternative to the acoustic MFCC-SDC features. On the 

other hand, as proved in [7], other alternative features as 

frame-level posteriors or phone log-posteriors (which are 

usually provided by phone recognizers) are not suitable for 

tasks where the features are assumed to be Gaussian-

distributed. In contrast, the transformation from log 

posteriors into log-likelihood ratios (LLR) provides final 

distributions that are nearly Gaussian. In order to calculate 

the PLLR features [14], the acoustic posterior probability of 

a phone unit m at each frame f, is calculated by summing up 

the posteriors of its corresponding states: 
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Then, the log-likelihood ratios at each frame f can be 

computed from posterior probabilities using equation (2) 

where it is assumed a classification task with flat priors. 
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Finally, the resulting M log-likelihood ratios per frame 

are stacked together to create the Phone Log-Likelihood 

Ratio (PLLR) features. For our system, these features were 

created using the open-source toolkit available in [15]. After 

that, an i-vector system similar to the one described in 

sections 3.1 and 3.2 was trained on the PLLR features.  

3.3.1 Phone Recognizers 

As explained above, in order to calculate the PLLR features 

we used the Hungarian, Czech, and Russian phone decoders 

developed by the Brno University of Technology (BUT) 

[16]. These phone decoders use a three-state model per 

phone, which means that three posterior probabilities per 

unit are given at each frame. Since these posterior 

probabilities are encoded by default, we applied some 

simple mathematical formulas to decode them (see section 

4.2 in [7] for further details). 
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3.3.2 Baseline PLLR features 

Following the same approach mentioned in [14], before 

computing the PLLR features, the three non-phonetic units 

of the BUT phone recognizers, i.e.: int, pau, and spk, are 

fused into a single non-phonetic unit. Then, a unified 

posterior probability is computed for each phone model by 

adding the posterior probabilities of all the states in the 

corresponding phone model (eq. 1). Finally, the log-

likelihood ratios were computed using eq. 2. In this way, for 

the Hungarian phone recognizer we have 59 PLLR features, 

50 for Russian, and 43 for Czech. As in [14], the use of first 

order deltas provided us a relative improvement of 3.4% in 

Cavg and the use of different kind of phone mappings did not 

provide improvements for any of the phone recognizers. 

Therefore, our baselines are given using the complete phone 

set for all the recognizers, including the delta features, using 

i-vectors of 400 dimensions, and UBMs with 512 Gaussians.  

3.3.3 Modification using States 

The first modification we tried over the baseline PLLR 

features was to use the likelihood ratio of each individual 

state as a feature instead of summing up the posteriors 

probabilities of the corresponding phone-states (Eq. 1). The 

motivation was to take advantage of the information 

encoded in the transitions between phones as well as 

between states which also provides discriminative 

information between languages. The caveat is the 

dimensionality problem: since each phone has three states 

per phone, the final PLLR vector for each frame is of 

dimension 177 for the Hungarian phone recognizer, of 129 

for the Czech, and 150 for the Russian decoder. We dealt 

with this problem using dimensionality reduction techniques 

as we will see in the next section. 

3.3.4 Dimensionality reduction techniques 

Following the results reported in [14] and [17], where the 

accuracy of a LID system was improved thanks to the 

dimensionality reduction of the PLLR features using PCA, 

for our experiments we also tested different dimensionality 

reduction techniques such as HLDA [18]. In this case, the 

dimensionality reduction was applied for the baseline PLLR 

features as well as for the state-based PLLR features. 

 

 Hungarian Czech Russian 

 Cavg 

(Im) 

Fact 

(Im) 

Cavg 

(Im) 

Fact 

(Im) 

Cavg 

(Im) 

Fact 

(Im) 

Baseline 8.97 17.64 9.62 18.19 10.02 18.60 

Phone-

PCA 25 

7.98 

(11.0) 

15.89 

(9.9) 

8.40 

(12.7) 

16.56 

(9.0) 

8.40 

(16.2) 

16.32 

(12.3) 

Phone 

HLDA 25 

8.38 

(6.6) 

16.36 

(7.3) 

8.41 

(12.6) 

16.88 

(7.2) 

8.02 

(20.0) 

16.50 

(11.3) 

States 

PCA 60 
6.95 

(22.5) 
14.39 
(18.4) 

7.59 
(21.1) 

15.17 
(16.6) 

7.20 
(28.1) 

14.84 
(20.2) 

Table 2. PLLR results using different dimensionality reduction 

techniques and comparing with the use of state-phones. 

In Table 2 we can see the results. We show the Cavg and 

the Fact values with relative improvements over the baseline 

in parenthesis. The number in PCA/HLDA means the 

optimum dimension. The conclusion is that state-PLLR 

provides significant improvements over phone-PLLR in all 

cases (between 9.6% and 14.3% relative in Cavg). Also, PCA 

is better than HLDA except in one case. 

3.3.5 Modification using SDPC parameters 

In [19] it is shown that the use of stacked coefficients are 

useful in the context of having noisy files and using similar 

phone log likelihood ratios as the ones used in this work. 

Here, stacked frames created from borrowing concepts from 

the SDC coefficients helped to compensate the potential 

drawbacks resulting from using the short-term phone 

information from the PLLR features, since it is possible to 

capture longer-term statistics. We apply the windowing 

concepts from SDC to the PLLR features, obtaining what 

we call Shifted Delta PLLR Coefficients (SDPC) and then 

we apply a PCA projection as in [17] because in this case 

dimensionality reduction is a must with the high 

dimensionality vectors that we have to manage (for instance, 

177 states in the Hungarian recognizer with a SDC 1_5_3 

will result in a vector of dimension 708). We compared 

using first the PCA reduction and then stacking the SDPC or 

first stacking the SDPC and then applying PCA. The last 

option provided consistent worse results and was discarded.  

We also experimented different configurations for the 

SDPC parameters (i.e. N-d-P-K) and PCA dimension (the N 

in our case) in order to capture long-term information. The 

best result so far was obtained for the configuration PCA-30 

and 1-5-3 for the other SDPC parameters, which captures 

200 ms. On the other hand, we obtained very similar results 

with other configurations to have a longer range. In this 

case, we think that the increase in dimensionality is the 

reason of this best result with K=3. 

Table 3 shows our best results. The relative 

improvements in parenthesis are comparisons with the best 

results without using SDPC from Table 2. 

 

 Hungarian Czech Russian 

 Cavg 

(Im) 

Fact 

(Im) 

Cavg 

(Im) 

Fact 

(Im) 

Cavg 

(Im) 

Fact 

(Im) 

Phone + PCA 

30 + SDPC 

1_5_5 

6.74 
(15.6) 

14.15 
(11.0) 

7.86 

(6.4) 

15.16 

(8.5) 

7.11 

(15.4) 

14.90 

(8.7) 

States + PCA 

35 + SDPC 

1_5_3  

6.57 
(5.5) 

13.97 
(2.9) 

7.33 

(2.8) 

14.70 

(0.6) 

7.00 

(3.4) 

14.75 

(3.1) 

Table 3. PLLR results using SDPC parameters 

 

In summary, we obtain the best results using the state-

based approach and SDPC provides improvements in all 

cases. In comparison with the baseline, the relative 

improvement in Cavg for the three recognizers is 26.8%-

23.8%-30.1% respectively.  
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3.4 Classifier and calibration back-end 

As classifier for all our subsystems, we used a Multiclass 

logistic regression, and for calibration and fusion, a 

Gaussian Back-end followed by a Discriminative Multi-

Class Logistic Regression. Previously, the input i-vectors 

were conditioned by within-class covariance normalization 

(WCCN, [20]) and length normalized. In Table 4 we can see 

the best results for the individual subsystems. The 

Hungarian PLLR subsystem is the best one, even better than 

the best acoustic (5.5% relative). 

 

4 FUSION RESULTS  

In Table 5 we can see the results for fusing all our systems. 

All improvements from now on will be relative in Cavg. The 

first two lines are our baselines, i.e. the systems presented in 

[3] using the acoustic modules (but using the original 16 

KHz audio files) and our previous phonotactic system (see 

[3] for more details). System 1 uses the acoustic modules, 

but with feature warping and local CMVN in the MFCC 

subsystem with an improvement of 6.7% over the baseline. 

System 2 adds the phonotactic system with an 

improvement of 7.6% over the baseline and of 10.9% 

compared to system 1. System 3 shows that using just one 

PLLR system instead of the phonotactic gives a clear 

improvement (10.5% from 2 to 3, 20.3% from 1 to 3). In 

System 4, where all three PLLR modules are included, we 

can observe that the result is even better than the two 

acoustic modules together, 11.7% improvement over System 

1, which is quite relevant. In System 5, the combination of 

the phonotactic and the PLLR modules provides an 

additional improvement of 7.0% over System 4. In System 6 

and System 7, there are additional improvements of 24.5% 

and 27.4% over Baseline 2. Also, comparing 2 and 7, there 

is an improvement of 21.4% due to the PLLR subsystems. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper we have described different improvements to a 

language recognition system. The main change is the 

incorporation of a phonotactic system based on the use of 

state-based phone log likelihood ratios and PCA as 

dimensionality reduction technique. The relative 

improvement over the baseline with no PCA and phone-

based PLLR is between 23.8% and 30.1% thanks to the use 

of the state-based approach and SDPC parameters. With 

PCA the state-based approach improves the phone-based 

between 9.6% and 14.3% relative. Besides, the inclusion of 

SDPC coefficients after the PCA projection provided 

additional improvements as we showed in Table 3, being the 

result that one PLLR subsystem is better than the best 

acoustic one. 

On the other hand, feature normalizations (i.e. short-term 

CMNV and feature warping) to the MFCC system 

contributed to improve this acoustic subsystem in 6.7%.  

The fusion of all the subsystems has shown many 

interesting conclusions described in Section 4, which can be 

summarized in that the PLLR modules have contributed to 

an improvement of 21.4% in Cavg to the final system. 

As future work, we will investigate new techniques to 

reduce the redundancy of information between adjacent 

frames when using the PLLR-based features. We also want 

to reduce the total number of states by merging the less 

frequent phones, especially for the Hungarian recognizer.  
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Subsystem Type Configuration 
Dev Eval 

Cavg(%) Fact Cavg (%) Fact 

MFCC-SDC 400iv, 512 Gauss. 6.50 12.24 6.95 14.68 

RPLP-SDC 400iv, 512 Gauss 6.54 12.34 7.36 14.73 

Phonotactic 400iv 6.94 13.37 9.85 18.14 

PLLR_Hung States + PCA-35 + SDPC 1_5_3 4.85 10.88 6.57 13.97 

PLLR_Czec States + PCA-35 + SDPC 1_5_3 5.23 11.18 7.33 14.70 

PLLR_Russ States + PCA-35 + SDPC 1_5_3 5.67 11.52 7.00 14.75 

Table 4. Best results for each subsystem on the dev and evaluation sets 

Fusion MFCC RPLP Phono 

Hung 

PLLR 

Hung 

PLLR 

Russ 

PLLR 

Czec 

Dev Eval 

Cavg Fact Cavg Fact 

Baseline 1 X X     4.83 6.09 5.39 7.77 

Baseline 2 X X X    2.88 3.89 4.85 6.48 

System 1 X X     3.87 5.21 5.03 7.04 

System 2 X X X    2.78 3.54 4.48 5.88 

System 3 X X  X   2.78 3.17 4.01 5.43 

System 4    X X X 2.88 3.50 4.44 6.41 

System 5   X X X X 2.36 3.23 4.13 6.07 

System 6 X X  X X X 2.15 2.83 3.66 5.29 

System 7 X X X X X X 2.25 2.64 3.52 5.18 

Table 5. Fusion results for the different subsystems on the dev and evaluation sets
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