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ABSTRACT

This paper presents our study of using language branch dis-
criminative information effectively for language recognition.
Language branch variability (LBV) method based on factor
analysis techniques is proposed. In LBV method, language
branch variability factor is obtained by concatenating low-
dimensional factors in the language branch variability spaces.
Language models are trained within language branches and
between languages. Experiments on NIST 2011 Language
Recognition Evaluation (LRE) 30s, 10s and 03s tasks show
the proposed LBV method provides stable improvement com-
pared to the state-of-art total variability (TV) approach. In 30-
second task, it gains relative improvement by 14.6% in equal
error rate (EER) and 12.9% in minimum decision cost value
(minDCF), and in new metrics of NIST 2011 LRE, it leads to
relative improvement of 7.2%-17.7%.

Index Terms— language branch variability, discrimina-
tive information, factor analysis, language recognition.

1. INTRODUCTION

Language recognition aims to determine the language identity
given a segment of speech. Two representative approaches
have been widely used in language recognition, which are
based on phonotactic features and spectral features. Phono-
tactic features attempt to extract high-level word syntactic
information, and spectral features are based on the low-
level acoustic signal properties [1]. Gaussian mixture model
(GMM) [2] and support vector machine (SVM) [3] have been
the choice in acoustic feature system over the past few years,
gradually outperforming the phonetic system [4].

Many language recognition techniques have been devel-
oped based on GMM and SVM classifiers such as total vari-
ability. Total variability based on factor analysis has pro-
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vided significant improvements to language recognition sys-
tems [5]. It maps a sequence of speech frames represented
by an adapted GMM mean supervector onto a low-dimension
total variability space. In the space, speaker and channel vari-
abilities are contained simultaneously. Low-dimensional total
factors (i-vectors) make it convenient to apply SVM classi-
fier. Since SVM is a two-class classifier, one-vs-rest strategy
is used to train classifiers for all languages.

With the development of language recognition, it is more
concerned about the discrimination between the pairs of
languages as is emphasized in the NIST 2011 Language
Recognition Evaluation (LRE) [6]. In NIST 2011 LRE,
more confusable target languages were evaluated, and new
performance metrics which considered only the N worst per-
formance language pairs were defined. This means that all the
target languages should be modeled suitably and the discrim-
inative ability between confusable pairs is more important.

In this paper, language branch variability (LBV) based
on factor analysis is proposed. The LBV method aims to
strengthen the discrimination between confusable languages.
Languages can be divided into different language branches in
perspective of linguistics. Languages in the same language
branch share a remarkably similar pattern, and may be re-
lated through descent from a common ancestor, or be differ-
ent dialects in a region. The proposed method considers the
discriminative information of languages from both intra lan-
guage branch and inter language branches in factor level and
model level. In factor level, language branch variability fac-
tors are obtained by combing factors mapped on the language
branch spaces. In model level, two groups of SVM models
are trained. One group of models covers richer discriminative
information of languages of the inner language branched and
the other group emphasizes the discrimination between lan-
guage branches. Experimental results show the discernment
between confusable language pairs is stronger compared to
the traditional factor analysis methods.

This paper is organized as follows: In Section 2, we give
a simple review of SVM and total variability. Section 3 shows
the proposed LBV approach in detail. Experimental setup and
results are presented in Section 4. Finally, we conclude in
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Section 5.

2. BACKGROUND

2.1. Support Vector Machine

SVM is a popular technique for discriminative classification.
The best separator of a SVM is defined by a kernel function
as follows:

f(x) =
N∑

i=1

αitiK(x, xi) + b (1)

where N is the number of support vectors, αi and b are the
SVM parameters during the training step, and ti is the label
of the support vectors xi. The value of the label is either 1 or
-1, depending upon whether the corresponding support vector
belongs to class 1 or -1.

The kernel function K(·, ·) can be expressed as

K(x, xi) = φ(x)
′
φ(xi) (2)

where φ(x) is a mapping from the input space to a possibly
infinite dimensional SVM expansion space.

2.2. Total Variability Language Recognition

The total variability approach has become the state-of-art in
both speaker verification and language recognition. It defines
a new low-dimensional space mapping the high-dimensional
GMM supervector to a low-dimensional and length-fixed vec-
tor.

For a given utterance, the language and variability depen-
dent supervector is denoted as Eq. 3.

M = m + Tw (3)

where m is the supervector from Universal Background
Model (UBM), T is language total variability space, and
w is a standard-normally distributed latent variable called
language total factor.

3. LANGUAGE RECOGNITION USING LANGUAGE
BRANCH DISCRIMINANT INFORMATION

3.1. Language Branch

A language family is a group of languages related to each
other through descended from a common ancestor in histori-
cal linguistics. Language branch is established by languages
sharing common features that other languages are not found
in the common ancestor of the language family, for example,
West Slavic Branch and East Slavic Branch, which are from
the Common Slavic Family.

Membership of languages in the same language branch is
established by comparative linguistics, genetically relative or

contact languages. Two languages are considered to be ge-
netically relative if one is descended from the other as Hindi
and Urdu or the two languages are descended from a com-
mon ancestor as Czech and Slovak. A language may also be
contacted with other languages by influencing each other, for
example, language transferring and specifically borrowing as
Japanese and Chinese. Mixed languages, pidgin languages
and creole languages also construct language branch for their
inseparable relationship.

3.2. Language Branch Variability Method

The NIST 2011 LRE differed from the previous ones in em-
phasizing the language pair condition, and it contained more
confusable language pairs such as Hindi/Urdu, Czech/Slovak
and Lao/Thai and so on. The most confusable pairs were gen-
erally within clusters of linguistically similar languages.

Total variability has been introduced to language recog-
nition and obtained significantly improved performance. But
the total variability doesn’t emphasize the discrimination of
confusable pairs. In this paper, we introduce the idea of lan-
guage branch to language recognition, and we called it lan-
guage branch variability method.

The LBV method pays more attention to the discrimina-
tive information of languages between and within language
branches in both factor level and model level.

In factor level, language branch variability factors are ex-
tracted by mapping the GMM supervector onto all of the lan-
guage branch variability spaces while the total variability onto
the total variability space. For a given utterance, the language
and variability dependent supervector is denoted in Eq. 4.

M = mbi + Tbiwbi (4)

where bi represents language branch i, mbi is the GMM su-
pervector of language branch i, Tbi is language branch vari-
ability space and wbi is variability factor vector in the space.
For simply, the following GMM of this paper represents a
specific language branch GMM.

The process of training language branch variability space
of a language branch is exactly the same as learning total
variability space, except for the GMM supervector instead
of UBM supervector. The language branch variability fac-
tor is obtained by concatenating factors in all of the language
branch spaces as follows:

w = [wb1 , wb2 , ..., wbi , ..., wbL
] (5)

where L is the number of language branches.
In this way, different variability factors within the same

language branch represent different characteristics of dif-
ferent utterances, and variability factors of all the language
branches constitute the language branch variability factor
covering richer discriminative information between language
branches.
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The variability factor of language branch i is defined as
follows:

wbi = (I + Tt
bi

Σ−1
biNbi(u)Tbi)−1Tt

biΣ
−1

bi F̂bi(u) (6)

We define Nbi(u) as a diagonal matrix whose diagonal blocks
are Nbi

[c]I. F̂bi(u) is obtained by concatenating all the first-
order Baum-welch statistics Fbi

[c] for utterance u. Σbi is a
common diagonal covariance of GMM. Nbi

[c] and Fbi
[c] can

be obtained as follows:

Nbi
[c] =

T∑
t=1

P (c|yt,Ωbi) (7)

Fbi
[c] =

T∑
t=1

P (c|yt,Ωbi)(yt − mbi

[c]) (8)

where T is the number of frames, c is the Gaussian index
and Ωbi is the diagonal covariance matrix estimated as [7].
P (c|yt,Ωbi) corresponds to posterior probability of mixture
component c generating the vector yt. mbi

[c] is the mean of
GMM mixture component c.

Two groups of SVM models are trained in LBV. Scores
of the two groups of models are fused as the final results.
A block diagram of the process is shown in Figure 1 taking
Arabic Iraqi as example.

In the first group, models are trained within language
branch, and we emphasize the discrimination of languages
within language branch. Here we take Arabic Iraqi as ex-
ample. We assigned Arabic Iraqi, Arabic Levantine, Arabic
Maghrebi, Arabic MSA to Arabic Branch. In the process
of training Arabic Iraqi model, utterances of Arabic Iraqi are
seen as positive samples and utterances of the other languages
in Arabic Branch are the negative samples. In this process,
discrimination of confusable language pairs are more promi-
nent.

As for the second group of models, target language mod-
els are trained among all the languages. The positive sam-
ples of target language are composed of utterances of the lan-
guage, and the utterances of all the other languages merged to
the negative samples. Language models in this group cover
the discriminative information of languages of different lan-
guage branches.

4. EXPERIMENTS

4.1. Corpora and Evaluation

Our Experiments were carried out on the NIST LRE 2011
closed-set task. There were 24 target languages in corpora
of 2011 evaluation database: Arabic Iraqi, Arabic Levan-
tine, Arabic Maghrebi, Arabic MSA, Bengali, Czech, Dari,
English American, English India, Farsi/Persian, Hindi, Lao,
Mandarin, Panjabi, Pashto, Polish, Russian, Slovak, Spanish,
Tamil, Thai, Turkish, Ukrainian and Urdu. Equal error rate

Arabic Iraqi

variability factors

Arabic Levantine variability factors

Arabic Maghrebi variability factors

Arabic MSA variability factors

Czech variability factors

Russian variability factors

...

Mandarin variability factors

backend

backend

+

Variability factors inner language branch

Variability factors of languages except for 

Arabic Iraqi

SVMTraining

SVMTraining

results

Fig. 1. A block diagram for training two groups of SVM mod-
els, taking Arabic Iraqi as example

Table 1. Classification of the 24 target languages in NIST
2011 LRE according to language branches

Language Name Language Branch
Czech, Slovak, Polish West Slavic Branch

Russian,Ukrainian East Slavic Branch

Bengali, Hindi, Panjabi, Urdu Indic Branch

Farsi/Persian, Pashto, Dari Iranian Branch

Arabic Iraqi, Arabic Levantine,
Arabic Maghrebi, Arabic MSA

Arabic Branch

English American, English India English Branch

Mandarin, Lao, Thai Sino-Tibetan
Branch

Spanish Spanish Branch

Turkish Turkish Branch

Tamil Tamil Branch

(EER) and the minimum decision cost value (minDCF) were
used as old metrics [8] for evaluation. We also used mini-
mum and actual average cost value (Cavg) as new metrics for
evaluation [6], in terms of: the new Cavg computed on the
24 language-pairs with the highest minCavg (minNCavg,
actNCavg) and the Cavg computed for all 276 language-
pairs (minFCavg, actFCavg).

4.2. Experiment Setup

The 24 target languages in NIST 2011 LRE were divided into
ten language branches according to the linguistic knowledge
as Table 1.

Our experiments were operated on the Mel Shifted Delta
Coefficients (MSDC) feature [9], with 7 Mel Frequency Cep-
stral Coefficients (MFCC) concatenated with Shifted Delta
Coefficients (SDC) 7-1-3-7 feature. Features were normal-
ized to mean 0 and variance 1 using Cepstral Mean Subtract
(CMS) and Cepstral Variance Normalization (CVN). UBM
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Table 2. Results of the total variability (TV) and lan-
guage branch variability (LBV) methods in EER(%) and
minDCF(%).

30s 10s 03s

system EER minDCF EER minDCF EER minDCF

TV 7.19 7.46 14.34 14.55 29.26 29.33

LBV 6.14 6.50 13.02 13.31 28.80 28.79

Table 3. Results of the total variability (TV) and lan-
guage branch variability (LBV) methods in minNCavg,
actNCavg, minFCavg and actFCavg.

system minNCavg actNCavg minFCavg actFCavg

30s TV 0.1259 0.1581 0.0271 0.0392

LBV 0.1159 0.1467 0.0223 0.0335

10s TV 0.2277 0.2482 0.0811 0.0927

LBV 0.2172 0.2370 0.0723 0.0836

03s TV 0.3439 0.3577 0.2178 0.2293

LBV 0.3408 0.3527 0.2119 0.2228

and GMMs used in our experiments contained 1024 Gaus-
sians. The dimension of total factors was 400. SVMTorch
[10] with a linear inner-product kernel function was imple-
mented to train the one-vs-rest SVM classifier. LDA and di-
agonal covariance Gaussians backend [11] are used to calcu-
late the log-likelihoods for target languages.

4.3. Experimental Results

Results of the total variability and the proposed LBV lan-
guage recognition system on NIST 2011 LRE are presented.
EER and minDCF of 30s, 10s and 03s tasks are observed in
Table 2. Table 3 shows results of the new evaluation metrics
on 30s, 10s and 03s tasks. DET plots of these two systems
are shown in Figure 2 for test durations 30s. Figure 3 gives
the performance of the two systems in terms of minDCF, and
the 15 language pairs in the same language branch from the
24 worst language pairs are observed.

In Table 2, it is shown that the LBV method performs
consistently better than the total variability language recogni-
tion system. On 30s task, it achieves a relatively reduction of
14.6% in EER and 12.9% in minDCF. And the LBV method
improves relatively by 9.3% in EER and 8.5% in minDCF
compared to the total variability system on 10s task.

NIST LRE 2011 focus on difficult to distinguish language
pairs and utilized new evaluation metrics. Table 3 shows that
the LBV method improved by 7.9%, 7.2%, 17.7% and 14.5%
on minNCavg, actNCavg, minFCavg, and actFCavg
respectively compared to the total variability system on 30s
task and 4.6%, 4.5%, 10.9% and 9.8% on 10s task.
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Fig. 2. DET curves of systems on NIST 2011 LRE 30s task.
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Fig. 3. minDCF of the total variability and LBV for 15 lan-
guage pairs which are in the same language branches from the
24-worst pairs on NIST 2011 LRE 30s task.

In Figure 3, the 15 worst language pairs shared by total
variability and LBV system are observed, which achieve vary-
ing degree reduction compared to the total variability except
for Dari/Pashto pairs in minDCF.

5. CONCLUSION

In this paper, a novel language recognition system named
LBV based on factor analysis is proposed. The LBV method
introduces the knowledge of linguistics to language recog-
nition. Variability factor vectors extracted in all of the lan-
guage branch spaces are concatenated and constitute language
branch variability factor. Language models are trained within
language branches and between languages. Experiments
show that the proposed LBV method outperforms the total
variability system significantly. Future work may include ex-
ploring new approaches based on language branch to improve
performance of language recognition.
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