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ABSTRACT

Nowadays phone recognition followed by support vector machine

(PR-SVM) has been proposed in language recognition tasks and

shown encouraging results. However, it still suffers from the

problems such as the curse of dimensionality led by the increasing

order of the N-gram feature supervector, the fast increasing number

of possible parameters because of fast exact match of the phoneme

history, etc.. These problems hamper the capability of N-gram vector

space model (VSM) of handling long-term contexts. In this paper,

a recurrent neural networks (RNN) based feature reconstruction

(FR) method is presented to compensate for the deficiency of

the N-grams feature for phonotactic language recognition in this

paper. Experiments are implemented on 2009 National Institute of

Standards and Technology language recognition evaluation (NIST

LRE) database. The results show that the proposed method gives

8.76%, 3.82%, 11.93% relative error rate reduction for 30s, 10s, 3s

respectively comparing with the baseline system.

Index Terms— language recognition, recurrent neural networks

(RNN), feature reconstruction (FR)

1. INTRODUCTION

Language recognition plays an important role in many applications,

such as machine translation, multilingual speech recognition by

identifying a language from an spoken utterance [1]. Nowadays,

phonotactic language recognition systems [2] and acoustic language

recognition systems [3] are two broad kinds of language recognition

systems which have been widely used with encouraging results [4].

However, current techniques of phonotactic language recognition

system still have limitations. The basic reason is that N-grams

feature supervector can not describe relationships for long phonemes

sequence effectively [5]. First, the high order N-grams are able

to describe long term context more accurately than the lower ones

but computationally expensive. Second, the training data used

to estimate parameters of high-order N-gram vector space model

(VSM) will be never enough. So tri-grams or four-grams are still

commonly used to build VSM in practical. Third, many histories of

the N-grams are similar, but N-gram VSM assumes exact match of

the histories. N-grams feature requires much more parameters to be

estimated than actually needed, which sometimes makes VSM not

robust enough.
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While the characteristics of neural networks (NN) indicate that

they can be a compensation for the deficiency of the N-gram VSM.

The recurrent neural network (RNN) is a refined form of NN for

the task of language modeling, which is able to handle long-term

contexts since the input vector contains not only the current word

but also the previous output from the neurons in the hidden layer

[6]. RNN outperforms traditional language models such as N-grams

which only contain very limited histories. One reason is its ability

to handle longer contexts by clustering similar sparse histories into

continuous low-dimensional spaces. Similar histories sharing the

same parameter requires less parameters to be estimated from the

training data, so the model is more robust. The distributions of N-

grams language model and RNN language model have been shown

to be complementary [7], we can integrate them together in language

recognition system to get better performance. In this paper, we

propose an RNN based feature reconstruction system for language

recognition.

The rest of the paper is organized as following. In section 2,

we review the traditional phonotactic language recognition system.

In section 3, the feature reconstruction language recognition system

is fully explained. Experimental setup is described in section 4.

In section 5 we give our experiments for evaluating the proposed

approach. Finally section 6 concludes this paper.

2. BASELINE SYSTEM

In this work we use phone recognition followed by support vector

machine (PR-SVM) [8] language recognition system as baseline

system. Generally, the language recognition system maps the input

data x to a high dimensional feature supervector as following:

Φ : x → ϕ(x). (1)

Then the supervector ϕ(x) is sent to the classifier and a decision is

made based on the output of the classifier [9]. In this paper

ϕ(x) = [p(d1|ℓx), p(d2|ℓx), ..., p(dF |ℓx)], (2)

here F = fN (f is the number of the phonemes of the fron-

tend phone recognizer and N is the order of N-gram) and di =
si...si+n−1 (n = N) is the N-gram phoneme string. ℓx denotes

the lattice generated from data x by a phone recognizer. p(di|ℓx) is

the probability of the N-gram di in the lattice.

In PR-SVM language recognition system an SVM is employed

as the classifier, the output score is computed as following:

f(ϕ(x)) =
∑

l
αlKTFLLR(ϕ(x), ϕ(xl)) + d, (3)
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here ϕ(xl) are support vectors. KTFLLR is a term frequency log-

likelihood ratio (TFLLR) kernel computed as [10]:

KTFLLR(ϕ(xi), ϕ(xj)) =
F
∑

q=1

p(dq|ℓxi
)

√

p(dq|ℓall)
∗

p(dq|ℓxj
)

√

p(dq|ℓall)
, (4)

the p(di|ℓall) is the observed probability of di across all lattices. In

this work the training stage is always carried out with a one-versus-

rest strategy.

3. FEATURE RECONSTRUCTION LANGUAGE

RECOGNITION SYSTEM

3.1. RNN feature reconstruction

Recurrent neural network language models (RNNLMs) have been

recently shown to improve perplexity and error rates compared

to traditional n-gram approaches in speech recognition systems

[11]. So here we introduce the RNN into language recognition

to reconstruct N-gram feature. Figure 1 illustrates the process of

RNN feature reconstruction. Here V and U are the weights matrix

between input and hidden layer and between hidden and output layer

respectively:
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Fig. 1. Process of RNN feature extraction.
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
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, (6)

where phi the ith phoneme of the phone recognizer, tu is the

ultimate time of the training for a single utterance. And the RNN

feature is built as:

ΦRNN : x → ϕRNN(x) = [ϕ(x), ϕr(ph1), ϕr(ph2), ..., ϕr(phf )],
(7)

where ϕr(phi) is a 2*zh dimensional vector, which is the RNN

projection for ith phoneme as following:

ϕr(phi) = [U(tu)i1,U(tu)i2, ...,U(tu)izh ,

V(tu)1i,V(tu)2i, ...,V(tu)zhi], (8)

here zh is the size of hidden layer, V and U are learned during the

training phase as

V(t+ 1) = V(t) + s(t)e0(t)
Tα, (9)

U(t+ 1) = U(t) + p(t)eh(t)
Tα, (10)

where p(t) denotes the input phoneme of the RNN system. Its

dimension equals the size of the phone inventory for a single phone

recognizer. s(t) is the output value from neurons in the hidden layer

which contains the state of the network and computed as following:

s(t) = f(Up(t) +Ws(t− 1)), (11)

where f(z) is sigmoid activation functions:

f(z) =
1

1 + e−z
, (12)

and the recurrent weights W are updated as

W(t+ 1) = W(t) + ΣT
z=0s(t− z − 1)eh(t− z)Tα, (13)

and e0(t) is computed using a cross entropy criterion, which denotes

the gradient of the error vector in the output layer:

e0(t) = d(t)− y(t), (14)

where the output layer y(t) is computed as:

y(t) = g(Vs(t)), (15)

with the activation functions are

g(zm) =
ezm

Σkezk
(16)

and the target vector d(t) represents the phoneme p(t+ 1). And

eh(t− τ − 1) = dh(eh(t− τ )TW, t− τ − 1). (17)

In this approach, RNN has been used to learn the probabilities

of phoneme sequences of utterances in unsupervised manner. Com-

putational requirements for neural network training are not quite

high because of the small size of the phone inventory for a single

phone recognizer. The network is trained using back propagation

through time (BPTT) algorithm, then the error is propagated through

recurrent connections back in time steps t. Hence, the network

can remember information for as many time steps as many training

examples that were already seen. Moreover, the output layer

is factorized into classes to speedup RNN feature reconstruction

processes. Every phoneme has been assigned to exactly one class.

3.2. Feature reconstruction based language recognition system

The architecture of the feature reconstruction language recognition

system is shown in Fig.2. In VSM part the vector space models

are trained by all the training data and classified just like baseline

system. In RNN feature reconstruction part, the RNN feature

reconstruction processing is described in 3.1. If we employ an SVM

as the classifier, the SVM output is:

f ′(ϕRNN(x)) =
∑

l′
αl′K

′(ϕRNN(x), ϕRNN(xl′)) + d′, (18)
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Fig. 2. Architecture of feature reconstruction language recognition system.

where ϕRNN(xl′) are support vectors obtained from training data.

When K′ is adopted as TFLLR kernel, K′ is computed as following:

K′
TFLLR(ϕRNN(xi), ϕRNN(xj))

=

f∗zh
∑

q=1

ϕr(pq)|xi
, ϕr(pq)|xj

ϕr(pq)|xall

, (19)

where ϕr(pq)|xi
denotes the qth element of the vector ϕRNN(xi),

and the denominator ϕr(pq)|xall
is the average value of ϕr(pq)|x in

all the RNN feature vector used for training. The training is also

carried out with a one-versus-rest strategy in feature reconstruction

language recognition system.

LDA-MMI method is used to maximize the posterior probabili-

ties of all the belief scores [12] with objective function like this [13]:

FMMI(λ) =
∑

∀i

log
p(xi|λg(i))P (g(i))
∑

∀j p(xi|λj)P (j)
, (20)

where

x = [w1f(ϕ(x)), w
′
1f

′(ϕRNN(x)), w2f(ϕ(x)),

w′
2f

′(ϕRNN(x)), ..., wNf(ϕ(x)), w′
Nf ′(ϕRNN(x))], (21)

g(i) denotes its class label. w,w1, w2, ..., wN, w
′
1, w

′
2, ..., w

′
N

indicate weights of the belief of the traditional feature and RNN

feature. Here
∑

i
ωi +

∑

i
ω′
i = 1. Usually we define ωi =

Mi/(
∑

i
Mi +

∑

i
M ′

i), ω
′
i = M ′

i/(
∑

i
Mi +

∑

i
M ′

i). M
′
i is the

number of the subset of training utterances that used to produce

the feature reconstruction and Mi is the number of the training

utterances of phone recognizer i. P (j) is the prior probability of

class j. p(x|λ) is weighted Gaussian mixtures.

There are three advantages for feature reconstruction language

recognition system. First, RNN feature reconstruction can describe

the utterances from a different aspect from the traditional vector

space model feature extract method, then the whole system can

extract more useful information to classify. Second, the N-grams

feature supervector and RNN feature supervector have been shown

to be complementary in handling short term contexts and long

term contexts, which makes the description of the utterances more

precisely and the model more robust. Third, unlike training language

model with a high dimensional input and output layer vector as

the large vocabulary, the RNN feature reconstruction using a small

dimensional input and output layer vector equal as the size of

phone inventory of the phone recognizer. Usually the dimension

of input and output layer vector is no more than 100, so the RNN

feature extraction do not cost much computation. The whole feature

reconstruction (FR) system only costs a little more computation than

baseline system but gains better performance.

4. EXPERIMENTAL SETUP

4.1. Baseline language recognition system

In this paper a PR-SVM language recognition system is used

as baseline system. The first step is to tokenize speech by the

means of running Hungarian (HU), Czech (CZ), Russian (RU)

Temporal Patterns Neural Network (TRAPs/NN) phone-recognizer

that developed by the Brno University of Technology (BUT) [14]

and provides the posterior probabilities of the phone occurrences.

Then, the decoder named HVite that is produced by HTK [15] is used

to produce phone lattices, and a choice of open software (SRILM

[16] and rnnlm [17]) is used to produce feature supervector. Then, a

popular classifier LIBLINEAR [18] is used to classify. Finally, we

use LDA-MMI algorithm [19] for score calibration.

4.2. Test, training and developing dataset

The results in the paper are reported for the test trials of the 2009

National Institute of Standards and Technology Language Recog-

nition Evaluation (NIST-LRE2009). The test data is comprised by

41793 test segments of 23 languages for 30-s, 10-s, and 3-s nominal

duration test.

The Call-Home, Call-Friend, OGI, OHSU and VOA Corpus are

used in this paper for training.

22701 conversations are selected from the database provided

by NIST for the 2003, 2005 and 2007 LRE and VOA as develop

database.

4.3. Evaluation measures

In this paper, the performance of language recognition systems

is reported in terms of Equal Error Rate (EER) and average cost

performance Cavg which is defined by NIST LRE 2009 [20].
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5. EXPERIMENTAL RESULTS AND DISCUSSION

In this work a PR-SVM [8] language recognition system serves as

a baseline system. Here about 1,800,000 utterances are used for

training. The BPTT algorithm is used in a block mode and the

block size is 10 for at least 5 steps during feature reconstruction.

The size of the hidden layer is from 10 to 500. The input layer

and the output layer have the same dimension, which is the size

of phone inventory for the phone recognizer. Table 1 and Table

2 show the performance of FR system. We use a small subset of

training data including about 30,000 utterances to reconstruct N-

gram features, HU frontend. Table 1 shows the performance of 1-

best phoneme string and Table 2 shows the performance of 50-best

phoneme string. Table 1 and Table 2 shows that the performance

of FR system is better than baseline but improving slowly with the

increasing of the number of hidden layer size. Usually in the training

stage the hidden layer size is order of magnitude smaller than input

vector, and larger hidden layer does not degrade the performance

of the language recognition system but makes the training progress

slower. So we can use a small hidden layer size to reduce the

computation and get a good performance. And the performance of

1-best is a little better than 50-best because every phoneme string in

50-best merely changes compared with 1-best, so 50-best may bring

more noise than information sometimes, but 500-best or more-best

can give more information. Actually, Table 1 and Table 2 indicate

the short utterances can get the most improvement in FR system.

Lacking of phonemes leads to an extremely sparse N-grams feature

supervector of the short utterance, which makes the N-grams feature

can not describe short utterances precisely. While the RNN feature

is a rich representation of short utterances with a fixed dimension.

Table 3 depicts performance of FR system. Fig.3 shows DET

curves of both baseline system and FR system on NIST LRE09.

Compared with the baseline system, the FR system yielded 1.25%,

3.52% and 14.31% EER, which achieved a 8.76%, 3.82% and

11.93% relative improvements respectively for 30s, 10s and 3s

compared to the baseline system.

Table 1. Performance of baseline system and FR system (1-best).

NIST LRE 09, HU frontend (EER/Cavg in %). FR-n means the size

of the hidden layer of RNN.

30s 10s 3s

baseline 2.17/1.98 7.61/7.54 23.90/23.42

FR-10 2.19/1.98 7.31/7.23 22.90/22.50

FR-50 2.16/1.99 7.29/7.09 22.24/21.93

FR-500 2.11/2.09 7.17/7.15 22.11/21.69

Table 2. Performance of baseline system and FR system (50-best).

NIST LRE 09, HU frontend (EER/Cavg in %). FR-n means the size

of the hidden layer of RNN.

30s 10s 3s

baseline 2.17/1.98 7.61/7.54 23.90/23.42

FR-10 2.14/2.04 7.40/7.22 22.65/22.70

FR-50 2.14/1.99 7.31/7.19 22.37/21.88
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Fig. 3. DET curves of baseline system and FR system for NIST

LRE09 (30s, 10s and 3s). The solid line presents baseline system

and dashed line presents the FR system.

Table 3. Performance of baseline system and FR system (1-best and

50-best FR, the size of the hidden layer of RNN is 10). NIST LRE

09 (EER/Cavg in %).

30s 10s 3s

HU(a) 2.17/1.98 7.61/7.54 23.90/23.42

HU-FR(b) 2.06/1.96 7.05/7.04 20.88/20.81

RU(c) 1.90/1.74 5.69/5.47 20.17/20.17

RU-FR(d) 1.79/1.84 5.44/5.42 19.86/19.72

CZ(e) 3.03/2.92 10.07/9.93 25.05/25.62

CZ-FR(f) 2.93/2.85 8.84/8.80 24.00/24.14

(a)+(c)+(e) 1.37/1.35 3.66/3.51 16.25/15.76

(b)+(d)+(f) 1.25/1.17 3.52/3.43 14.31/14.18

6. CONCLUSION

In this paper, an approach to build feature reconstruction language

recognition system has been presented. To describe spoken utter-

ances from diversely aspect, the state-of-the-art RNN is employed

to reconstruct feature vectors, in which subsets of training data is

weighted to produce feature reconstruction for language recognition.

The experiments results evaluated on NIST LRE 2009 task show

that the relative improvements of the proposed technique are 8.76%,

3.82% and 11.93% for 30s, 10s and 3s over traditional approaches

respectively.
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