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ABSTRACT

An ambiguity function (AF) for the multiple-input multiple-
output (MIMO) radar with correlated waveforms is derived.
It serves as a generalized AF for which the phased-array and
the traditional MIMO radar AFs are important special cases.
A simplified expression for the AF for the case of far-field tar-
gets and narrow-band waveforms is also derived. We establish
relationships between the generalized MIMO radar AF met-
ric and the previous works on AF including the Woodward’s
AF and the AF defined for the traditional colocated MIMO
radar. Moreover, we compare the AF of the MIMO radar with
correlated waveforms with the squared-summation-form AF
definition. Simulation results show that the generalized MIMO
radar AF achieves lower relative sidelobe level with proper
design of the waveform correlation matrix or, equivalently, the
transmit beamspace matrix.

Index Terms— Ambiguity function, correlated wave-
forms, generalized, MIMO radar, transmit beamspace.

1. INTRODUCTION

Recently, the multiple-input multiple-output (MIMO) radar
has become the focus of intensive research [1]—[3]. Despite
the benefits due to the use of waveform diversity [3], the tradi-
tional MIMO radar with colocated transmit antenna elements
suffers from the loss of coherent processing gain that can
be achieved in the phased-array (PA) radar system [4]. The
transmit beampattern can be formed by designing a proper
correlation matrix for the waveforms at the transmitter [5]-[7].
Such waveform correlation matrix design can be simplified to
transmit beamspace (TB) matrix design (see for example [8]).
It allows to achieve the coherent processing gain by focus-
ing the energy of multiple transmitted orthogonal waveforms
within a certain angular sector where a target is likely to be
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located using beamforming techniques [4], [8]. For the MIMO
radar systems, accurate estimation and detection capabilities
are critically important. For example, one important task is to
estimate the direction-of-arrivals of potential targets utilizing
the extra degrees-of-freedom offered by the MIMO radar. To
efficiently characterize the resolution performance, ambigu-
ity function (AF) [9]-[13] can be employed. There are some
works on the traditional MIMO radar AF [11]-[13], and their
starting point is the well-known Woodward’s AF [9], [10]. The
research questions of great significance are to see how the AF
of the MIMO radar with correlated waveforms behaves, and
what the relationships with the previous works on AF are.

In this paper, we define the AF for the MIMO radar with
correlated waveforms, in which the phase shift information
conveyed by the target echo is contained. This phase shift re-
sults from the array geometry and the relative position between
the target and the transmit/receive colocated array. Equivalent
phase centers are used for its calculation. Moreover, we de-
rive a simplified AF expression for the case of far-field targets
and narrow-band waveforms. Based on this expression rela-
tionships between the AF of the MIMO radar with correlated
waveforms and the previous works on AF are established. It
can be utilized as a generalized AF for the PA and traditional
MIMO radars, as well as the MIMO radar with correlated
waveforms. We propose a method to reduce the relative side-
lobe level of the AF and compare it with the traditional MIMO
radar AF defined in [13] by simulations.

2. SIGNAL MODEL

Consider a colocated MIMO radar system with a transmit
array of M antenna elements and a receive array of N antenna
elements. The complex envelope of the transmitted waveforms
in the case of the traditional MIMO radar can be modeled as
Sm (t) = VE/Moy, (t), m = 1,2,..., M where E is the
total transmit energy, ¢ is the continuous time index, i.e., time
within the pulse, and ¢,, (t) is the mth orthogonal baseband
waveform. Without loss of generality, we assume that the
transmitted waveforms are normalized to have unit-energy, i.e.,
S |bm () ?dt = 1, m = 1,2,..., M where T is the time
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duration of the pulse.

In the MIMO radar with correlated waveforms formulated
using the TB matrix design, K (in general, K < M) initially
orthogonal waveforms are transmitted. For each waveform,
a transmit beam is formed by illuminating a particular area
within an angular sector 2. The signal radiated towards the
target that is located at the spatial direction 6 via the kth
transmit beam can be modeled as [8]

FE
si (1) = \/;cia(e)m(t), k=12, K ()

where a(6) is the transmit array steering vector, ¢, denotes the
kth column of the M x K TB matrix C which is defined as
C2cy,...,ckl,and ()T
Each column of C with M elements is designed to form a
certain transmit beam within the sector-of-interest €2, and it
corresponds to one of the K transmitted waveforms. Let ¢,
be the mth element of cg, then the signal 5,, (¢) radiated by
the mth antenna element can be expressed as

Srn \) E Crnk¢k

The transmitted energy focused within the sector-of-interest
2 can be maximized by properly designing the TB matrix C.

m=1,....M. ()

3. GENERALIZED MIMO RADAR AF WITH
CORRELATED WAVEFORMS

3.1. AF Definition

Let a point target be described by the parameter ® which
contains the information of the target position vector p and
the velocity vector v. Based on (2), the received signal at
the jth receive antenna element after demodulation to the
base band can be written as (3), shown at the bottom of this

stands for the transpose operation.

page. Here «,,,; denotes the complex reflection coefficient for
the (m, j)th transmit-receive channel, 7,,; (p) is the two-way
time delay due to a target located at p, f. is the operating
frequency, fi,; (®) is the Doppler shift associated with the
(m, j)th transmit-receive channel for the target characterized
by the parameter © and z; (t) is the white Gaussian noise
observed at the jth receive antenna element with power o2.

At the receiving end, 7; (¢, ®) is matched to each of the
waveforms ¢y (t), k = 1,..., K with a specific target param-
eter ®' due to the fact that it is composed of the cumulative
echoes of the known transmitted waveforms. Thus, the re-
ceived signal component 7;; (@, ®') that is associated with
the ¢th transmitted waveform can be obtained as (4), shown
at the bottom of this page. Here (-)* is the conjugate opera-
tor, ¢ () is the equivalent phase center for the ith transmitted
waveform and Z;;(t) is the noise after matched filtering.

We define the AF as the square of the coherent summation
of all noise-free matched filtering outputs 7/, (©,©’), j =

.,Nandi=1,..., K. Then the AF of the MIMO radar
with correlated waveforms can be mathematically expressed
as (5), shown at the bottom of this page. Let us introduce an
M x K matrix R whose (m, i)th element is defined as (6),
shown at the bottom of the next page. Using (6), the AF (5)
can be expressed in a simplified form as (7), shown at the
bottom of the next page.

The AF (7) is composed of summation terms, and each
term contains two more components in addition to the complex
reflection coefficient. One is the matched-filtered component
denoted by (6), which stands for the effect of waveform corre-
lation. The other is composed of the last two exponential terms
in (7), which stands for the phase shift information caused by
the relative position and velocity of the target with respect to
the array geometry. It can also be understood as follows. The
mth transmit antenna element emits a signal that is composed
of all the K initially orthogonal waveforms windowed by the
elements of the mth row in the TB matrix C. Thus, the TB

75 (t,0) =

m=1k=1

M K
% D> ek (t = T (D)) exp {3277 () (o + Fmj (©))} exp {j2m fmj (O) 1} + 2 (£)  (3)

Fji (67 6/) = / (t 6) t 6/ dt = \/> Z Z Amj ka¢k (t — Tmj (p)) Qs;k (t = Tq(i)j (p/)) “4)

m=1 k=1
X €Xp {7]'271'ij ( ) (fc + fm] (

+2]-Z-()_r (0,0) + z;; (t)

N} exp {52n7q); (B') (fe + faqi); (©

,)) } exp {j27’l' (fnzj (6) - .fq(i)j (6/)) t} dt

@@’éNK (0,0
HRA

j=11i=1 Jj=11i=1

X exp{—j21Tm; (P) (fe + fm; (O

NYexp {52n71; (P') (fe + fagi); (©

K K
f S35 [ em =g 001 ¢~ 705 ) s

m=1k=1

)} exp {527 (fmj (©) = foq; (©)) t}dt
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matrix C is playing a role of transforming the original K x K
waveform covariance matrix to the M x K matrix R. The
main purpose of adding the phase shift information in (7) is
to incorporate the property of coherent processing introduced
by the array configuration. By properly designing the matrix
C and selecting the equivalent phase centers, the AF (7) can
serve also as the AF for the PA and traditional MIMO radars.

3.2. Far-Field Targets and Narrow-Band Waveforms

One most common scenario that radar systems deal with is the
case of far-field targets and narrow-band waveforms. The ef-
fect of the complex reflection coefficients in different transmit-
receive channels can be neglected in this case because the
contributions of different transmit-receive channels to the gen-
eralized MIMO radar AF are constant at any given time t.
They remain constant even when considering multiple pulses
and inter-pulse varying reflection coefficients, if long pulse
width is employed and no range foldering occurs [12].

Assume that the antenna elements of the transmit and re-
ceive arrays have locations {qr,1,...,qr,m} and {gr 1, ..,
qr, N}, respectively, and the equivalent phase centers have
locations {qTE.1,-- -, qaTE, Kk } whose elements are vectors
in three-dimensional Cartesian coordinates. Let u (®) be a
unit-norm steering vector pointing from the transmit/receive
array to the target with parameter ®. Then the AF (7) can be
simplified as

al (©)Rarg (©)

)
where the (m,)th element of the M x K matrix R is ex-
pressed as

X(©,8) = |aff (©)ag ()]

[R],,; (AT,Af4,C) ©)
[Zcmk/gﬁk (t — AT)exp {j2m A fat} dt

and (-)f denotes the conjugate transpose. Here also A7 =

7(p) — 7(p), Afa = f(©) — f(©), and, ar(®) £

[exp{@”(®)ar,1}, ... ,exp {0’ (O)arm}] , ar(®) £

[exp {ﬁT(Q)qRJ}, ... ,eXp {flT(@)qR,N}]T, aTE(®) £

[exp {0 (®)arg,1}, ... ,exp {0 (O)qre,x }]* are the

M x 1 transmit array steering vector, the N X 1 receive array

steering vector, and the K x 1 equivalent transmit array steer-
ing vector, respectively, with (@) £ j27f'(®)-u(®)/c
and f'(®) £ f.+ f(©). The dependence of R from AT, A f,,
and C is not shown in (8) for brevity, and the subscript indices
for 7 and f are omitted for the far-field narrow-band case.

3.3. Relationships With Other AFs

Let the K x K matrix X (7, f4) be the AF matrix of the K
orthogonal waveforms, whose (7, k)th element is given by

(X1, (7, fa) = /qﬁj (t) ¢y (t — 7) exp {j2m fqt} dt. (10)

Using (9) and (10), the simplified AF (8) can be expressed as

= lall (©)an ()

x |aff (@) CX (AT, Afy) arn () |

X (0,0) = (11

2

where X (A7, Afy) is the K x K matrix whose elements are
given by (10). Considering that A7 and Af; depend on @
and ©’, we employ these two parameters to denote the AF of
the MIMO radar with correlated waveforms.

Equation (11) establishes the connection between the gen-
eralized MIMO radar AF and the well known Woodward’s
AF. If the number of transmitted waveforms K is increased
to M, C is simply the identity matrix I, and the equivalent
phase centers are selected to be the positions of the M transmit
antenna elements, then the AF (11) becomes

E 2
XMIMO (@,@/) = M ‘aﬁl (©)ar (@/)|

x |aff (©)x (AT, Afq) ar (©)

Expression (12) denotes the traditional MIMO radar AF and
has the same form as the definition in [11] except for the
magnitude term. This term represents the general expression
of the transmit power allocation for the traditional MIMO
radar. Therefore, if E is selected to be equal to M, then
the expression (12) and the AF definition [11] have identical
expressions. Furthermore, the generalized MIMO radar AF
(11) is also related to the traditional MIMO radar AF with K
uniform subarrays [14]. In this case, C is designed as a block
diagonal matrix whose block elements are associated with the

12)

’ 2

R],;(©,6',C

mi

[Zcmk/m = Tmj (P))] (t = 7q(; (P))exp {527 (fin; (©) — fo(a); (©)) t}dt  (6)

j=11i=1 m=1

(0,0,C,j)exp{—52nTm; (P) (fe + fm; (©

)

2

)} exp {52175 (") (fe + fo(iy; (©)) }
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Fig. 1. Difference between the AF (8) and that defined in [13].

subarrays. The corresponding equivalent phase centers are
selected as the centers of the subarrays. When K is selected as
1, the generalized MIMO radar AF (11) also boils down to the
PA radar AF. Consequently, the AF defined in this paper serves
as a unified definition of AF, and it links to the Woodward’s
AF by using the expression of the Woodward’s AF matrix.

For the MIMO radar with correlated waveforms, if each
coherent processing gain Y; £ al(®@)c;, j € {1,...,K}
is designed to have constant magnitude, then the rotational
invariance property [15], [16] holds. Hence, we can design the
TB matrix C to guarantee that the jth coherent processing gain
and the jth element of the equivalent transmit array steering
vector have opposite phases, i.e., ZY; = —Zarg ;(©), j €
{1,..., K}, in order to reduce the effect of the relative side-
lobes of the generalized MIMO radar AF.

4. SIMULATION RESULTS

Throughout our simulations, we assume uniform linear arrays
of M = 8 omni-directional transmit antennas and N = §
receive antennas spaced half a wavelength apart. Both the
transmit and receive arrays are located at the same position
on the z-axis. The total transmit energy is fixed to £ =
M. Polyphase-coded sequences [17] are employed as the
transmitted waveforms. The code length of each waveform is
256. We employ a single pulse whose pulse width is selected
to be 7' = 10 ms to simulate the AF. The time-bandwidth
product is set to be BT = 128, and the sampling rate is set to
be fs = 2B. Two targets are assumed to be located on the y-
axis, sharing the same spatial angle # = 0°. The simulated AFs
for the case of far-field targets and narrow-band waveforms
are normalized to their maximal value.

In the first example, we investigate the difference between
the generalized MIMO radar AF metric defined in this paper
and the AF metric defined in [13]. 8 waveforms for the tradi-
tional MIMO radar case are employed, and the TB matrix C is
given as the identity matrix I;. It can be seen that the differ-
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Fig. 2. Generalized MIMO radar AF with 4 waveforms.

ences are nearly all above zero, which means that the relative
sidelobe level of the AF in [13] is higher than that obtained
using the AF (8). The largest difference of the relative sidelobe
level reaches 4% of the normalized AF metric peak (i.e., 1),
demonstrating that the AF (8) gives a better relative sidelobe
level than that in [13]. This means that the maximum possible
region which is free of sidelobes achieved in the generalized
AF for the MIMO radar with correlated waveforms is always
larger than that achieved in the AF in [13].

In the second example, we present the generalized MIMO
radar AF with K = 4 waveforms. The first 4 waveforms
used in the first example are exploited. The TB matrix C of
size 8 x 4 is designed to meet the aforementioned condition
that the rotational invariance property at the receive array
holds. It can be seen that the mainlobe peak of the generalized
MIMO radar AF is obtained at the point (0, 0), i.e., no time
and Doppler delays for the two targets. The relative sidelobe
level of the generalized MIMO radar AF in this case ranges
from —50 dB to —20 dB. The thumbtack shape of the AF
clearly demonstrates how the AF of the generalized MIMO
radar with 4 orthogonal transmitted waveforms behaves.

5. CONCLUSIONS

We have derived the AF for the MIMO radar with correlated
waveforms that facilitates obtaining waveform diversity and
coherent processing gain simultaneously. Our definition gen-
eralizes the AFs for the PA and traditional MIMO radars, as
well as the AF of the MIMO radar with correlated waveforms.
A simplified AF expression for the case of far-field targets and
narrow-band waveforms is obtained. We have established the
relationships between the generalized AF defined in this paper
and the previous works on AF including the Woodward’s AF
and the AF for the traditional MIMO radar. It is shown that
the proposed generalized MIMO radar AF can achieve lower
relative sidelobe level by properly designing the TB matrix or,
equivalently, the waveform correlation matrix.
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